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ABSTRACT 

Lipinski, Walter Charles; Optimal Digital Computer Control of 

Nuclear Reactors; Ph.D., Electrical Engineering Department; Illinois 

Institute of Technology; January, 1969. Adviser: Professor 

Andre G. Vacroux. 

Prefaced by a literature survey of earlier applications of modern 

control theory and presentation of pertinent kinetics equations, the 

dissertation describes the sequential analytical investigation of a 

digital computer control system to Implement nuclear reactor control and 

estimation functions. 

First, nonlinear plant and measurement equations are derived for a 

deterministic one-group prompt-jump point model, using rate of reactiv

ity change as control input. Next, state-space concepts are introduced, 

resultant equations are expressed in vector-matrix notation, linearized 

by a first-order Taylor series expansion, and solved for a discrete-

time input. 

Dynamic programming yields an optimal stationary feedback control 

law which minimizes a quadratic performance index for a discrete-time 

system. An index consisting of the sum squares of the neutron density 

derivations is defined and augmented to include terms in reactivity and 

control input. With the aid of an iterative digital computer program 

the stationary feedback matrix is calculated for selected values of 

weighting coefficients. Corresponding transient behavioral plots of the 

nonlinear system show that for the performance index as defined, the 

xi 



neutron density deviation is decreased to zero in one sample Interval 

after a step disturbance in reactivity. 

In order to satisfy the optimal control law requirement that all 

state variables be available, a nonlinear estimator is used to generate 

estimates of nonmeasurable system state variables. Estimator equations, 

based on a set of finite-difference equations, are derived by minimizing 

a performance index consisting of the sum squares of errors in the 

previous estimate and in the current measurement. The resulting non

linear equations are solved iteratively on a digital computer. Since 

the system is described by differential equations, integration is used 

to obtain the numerical values required by the estimator during the 

iteration sequence. 

Finally, the cascade combination of an optimal estimator and 

optimal controller yields a control system whose performance is unequal 

to a system without an estimator. Estimates generated for the nonlinear 

system necessitate a large control input at the first sampling following 

a reactivity disturbance. Inclusion of a computation time delay results 

in further degraded performance. If an integrator is incorporated into 

the nonlinear estimator, the integration step size must be reduced when 

a control input is present. Since the computer programs used to solve 

the estimator equations and to compute the control input are not 

compiled for minimum time execution, no conclusion can be made with 

regard to real-time control capability. 

The dissertation includes a comprehensive literature survey of 

earlier applications of modern control theory to nuclear reactors a 

detailed review of pertinent reactor kinetics equations, and a wealth of 

selected nuclear and control engineering bibliographies. 
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CHAPTER 1 

INTRODUCTION 

1.1 Growth of nuclear power plants 

Achievement of the first self-sustaining nuclear fission chain 

reaction in 1942 was recognized by Enrico Fermi and his colleagues as 

the initial objective toward creation of a destructive weapon. However, 

each scientist also recognized the constructive potential of controlling 

and converting the heat of fission into useful mechanical and electrical 

energy. In fact, one of the earliest concepts of converting nuclear 

energy into useful electrical energy — the Daniels Experimental Power 

Pile at Oak Ridge National Laboratory — was based on studies initiated 

in 1944 by Dr. Farrington Daniels, a member of this historic group. 

Unfortunately, national security prevailed and the application of 

controlled nuclear power was directed toward military logistics. 

In 1947, Congress authorized the development of a nuclear reactor 

for submarine propulsion. Work initiated at Argonne National Laboratory 

near Lemont, Illinois, led to the construction and operation, on 

March 30, 1953, of the first nuclear propulsion system in a section of 

a submarine hull at the National Reactor Testing Station in Idaho. This 

land-based installation was the forerunner of the pressurized water 

system used in the submarine Nautilus, which was launched the following 

year. This launching represented the first milestone of the Naval 

Reactors Program which has since revolutionized naval strategy. 



New reactor concepts for municipal power systems also were pio

neered by Argonne scientists and engineers through the design, 

development, construction, and operation of simplified experiments or 

small-scale prototype systems at the Argonne test site in Idaho. Such 

was the case in 1951, when Experimental Breeder Reactor-I became the 

first nuclear reactor to generate electricity (170 kilowatts), thereby 

demonstrating the technical feasibility of: using unmoderated reactors 

for generation of useful power, employing sodium and sodium-potassium 

alloy as coolants, and breeding plutonium fuel. This experiment led 

the way to subsequent construction and operation, in 1963, of: EBR-II, 

a prototype fast power breeder central station plant; and the Enrico 

Fermi Atomic Power Plant, the world's first large fast breeder nuclear 

power plant. 

In 1953, a series of Boiling Reactor Experiments (BORAX-I, -II, 

-III) were started at the Idaho test site. These experiments ultimately 

demonstrated the inherent power stability of the boiling water reactor 

concept. On July 17, 1955, the town of Arco, Idaho, was temporarily 

serviced with electricity generated by the BORAX-III power plant. 

The technology gained from the BORAX experiments was applied in the 

construction of the Experimental Boiling Water Reactor (EBWR) at 

Argonne. On December 29, 1956, EBWR achieved its rated electrical 

output of 5,000 kilowatts, and thus became the first of a series of 

prototype central station power reactors to go into operation in the 

USAEC Civilian Power Reactor Development Program. 

Two years later (May, 1958), the Shippingport Atomic Power Station 

in Pittsburgh, Pa., was dedicated as the first large-scale, nuclear 

power-generating plant (60,000 electrical kilowatts) in the 



United States. Built by Westinghouse Electric Corporation as part of 

the same Civilian Power Reactor Development Program, the Shippingport 

plant design is based on the pressurized, light-water reactor concept. 

Since 1958, the growth of nuclear powered central station plants in 

the United States has exceeded early predictions. This growth has been 

achieved by making nuclear plants economically competitive with conven

tional fossil-fueled plants. The most recent survey [1] lists 13 

operable, 31 being built, and 40 planned. Of these plants, 81 are 

based on the boiling and pressurized light-water reactor concepts. 

As a consequence of the ever-increasing demand for uranium to fuel 

the light-water-cooled reactor power plants, the U.S. Atomic Energy 

Commission (USAEC) has given the highest priority to development of 

liquid-metal-cooled fast breeder reactors. In August, 1968, a Liquid-

Metal Fast Breeder Reactor (LMFBR) program plan was Issued. The overall 

objective is to achieve, through research and development, the tech

nology required to design, construct, and safely, reliably, and 

economically operate fast breeder reactors for use in central station 

nuclear power plants. Volume 4 of that plan specifies the instru

mentation and control developments essential to reliable and safe 

operation of an LMFBR plant [2]. 

1.2 Outline of dissertation 

The research described in this dissertation was undertaken with the 

objective of applying modern control theory to the analysis and design 

of an optimal control system for a liquid metal fast breeder reactor. 

The fundamental problems of finding the optimal regulator control law 

and of estimating the states of the nonlinear deterministic system model 

Numbers in brackets pertain to references cited on pages 164 to 173-



have been solved. A natural consequence of applying dynamic 

programming to obtain the feedback regulator solution and iteration to 

the estimation problem is the requirement that a digital computer be 

used to Implement the control and estimation functions. 

Chapter 2 is devoted to a review of earlier applications of opti

mal control theory to nuclear reactor control problems. Since it was 

not feasible to discuss the specific applications in detail, appro

priate references are cited. In addition, extensive selected bibliog

raphies of nuclear and control engineering literature have been 

compiled for those who wish to specialize in this area. 

Chapter 3 contains the equations which describe the reactor system. 

A one-group delayed neutron model is used as an approximation to the 

six-group system. A further simplification of the system equations is 

achieved by using a prompt-jump approximation. 

In Chapter 4, the system differential equations are defined in 

terms of state variables and matrices. Nonlinear system equations are 

linearized using nominal values and the resulting set of equations is 

solved with discrete-time inputs. 

Chapter 5 treats the solution of the closed loop regulator problem 

by applying dynamic programming to obtain the minimum of a specified 

performance index and the resulting transient response is discussed. 

The closed loop solutions of Chapter 5 ideallstically assume that 

all state variables are measurable; therefore, the solution of a deter

ministic estimator is derived in Chapter 6. Chapter 7 considers the 

combined problem of estimation and control. 

Finally, the work is summarized, along with conclusions and 

recommendations for future research, in Chapter 8. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

From 1942 to 1960, analysis and design of control systems for 

nuclear reactors was based on classical methods. 

Modern reactor control theory, which is concerned with optimal 

processes, emerged from Wiener's [6] theory in 1942, Bellman's [7] 

dynamic programming techniques in 1954, and Pontryagin's [8] Maximum 

Principle in 1956. Although several papers on off-line optimization of 

nuclear fuel management and xenon shutdown programs were published, 

Kallay [3], in I960, was the first to relate modern control theory to 

nuclear reactors. 

Early application of digital computer' techniques to power reactors 

was limited primarily to data handling and on-line computations. In 

1962, an issue of Nucleonics [4] was devoted to a special report on on

line computers for power reactors. At the 1964 Geneva Conference, 

Schultz and Legler [5] presented a status report on the application of 

digital computer techniques to reactor operation. Today, computer con

trol systems are installed on several nuclear reactors, but these 

installations are on critical facilities or limited only to process con

trol on power reactors. Literature describing these systems are listed 

in the general nuclear bibliography. 



2.2 Previous investigations 

Kallay [3] suggested four applications of dynamic programming 

techniques to nuclear reactors: optimization of poison distribution, 

optimization of over-all plant efficiency with respect to component 

cost, design of optimal control programs, and determination of flow 

distribution through a heat exchanger. Under control applications, 

Kallay outlined the optimal solution to a minimum energy start-up 

problem. 

Foureau [9] used Pontryagin's maximum principle, a single group of 

delayed neutrons, and a constraint on the rate of change of reactivity, 

to determine the switching boundaries for a reactor start-up program. 

Shen and Haag [10, 11, 12, 14] and Haag [13] used Pontryagin's 

maximum principle to solve an optimum start-up problem using a one-group 

delayed neutron model and a prompt-jump approximation. In the resulting 

control scheme, the switching conditions on the input were determined by 

nonlinear functions of time. 

Mulcahey [15, 15] analyzed the time optimal control of nuclear 

reactors with velocity-limited control devices. His model consisted of 

a fast reactor with one group of delayed neutrons and a reactivity 

feedback, which was a function of the power level. The prompt-jump 

approximation was employed, and the resulting set of equations was 

solved analytically. System behavior was studied with analog and digi

tal computers. He concluded that a power-level-based switching con

troller should be adopted. 

Rosztoczy [17, 18] used the maximum principle and analyzed three 

optimization problems: a shutdown program for minimum xenon buildup, 

flux state changes in nuclear reactors, and minimum fuel loading. The 



model consisted of a single group of delayed neutrons and a reactivity 

feedback proportional to the power level. An integral performance index 

equal to reactivity squared was minimized by solving the resulting two-

point boundary value problem on an analog computer. A suboptimal 

minimum-time solution was investigated by decreasing the time to execute 

a change in power level. Power level changes with minimum control 

energy were investigated by assuming a performance index equal to the 

Integral of the reactivity rate squared. The solutions presented were 

open loop, and the control input was generated as a function of the 

adjoint variables. 

Ruiz [19] used Pontryagin's maximum principle to minimize an 

integral performance index consisting of the sum of power deviation 

squared and square of the product of reactivity and power. One group of 

delayed neutrons was assumed. A closed loop control law was derived 

which required pre-programmed time variable coefficients. 

Ash [20] used dynamic prograraning to derive a functional equation 

which would cause a boiling reactor to be driven back to its equilibri

um condition in minimum time by continuously moving control rods. 

Hermsen [21] used Wiener's theory and a linearized model of the 

reactor to design a closed loop control system based on minimization of 

an integral squared error index. Also, Z transform theory was used to 

design a control system which would be suitable for computer control. 

Pontryagin's maximum principle was applied to a system consisting of six 

groups of delayed neutrons and a model based on Newton's law of cooling. 

A set of 2(m + 7) equations resulted, where m was the number of 

temperature nodes. Dimensionality of the problem was reduced by going 

to a one-group linearized model, and a closed-loop control law was 



derived. The maximum principle also was used to solve the minimum-time 

problem with and without a constraint on the reactivity rate. In view 

of the difficulties encountered in obtaining solutions, it was suggested 

that dynamic programming be applied to the problem in future research. 

Kliger [22, 42] used Holder's inequality to solve the minimum-time 

control problem subject to a constraint consisting of the product of 

reactivity and flux. One group of delayed neutrons was assumed. He 

derived a closed loop switching function, and proposed that a state 

estimator be used to generate the non-measurable state variables. 

Mohler [22, 24, 25] used the maximum principle to analyze the mini

mum-time control of neutron density subject to a magnitude constraint on 

reactivity. A bang-bang control law was derived. In order to maintain 

constant power level, an additional input was required, after the last 

switching, to offset the effect of delayed neutrons. For the case of a 

six-group delayed neutron model, a feedback reactivity proportional to 

the sum of the rate of change of precursors was required to hold power 

level constant. A dither control was proposed as an alternate solution. 

Weaver et al. [26] investigated: suboptimal closed-loop control 

employing the second method of Lyapunov, nonlinear stability of coupled 

core reactors described by a set of differential-difference equations, 

synthesis of optimal closed-loop control of nuclear reactor systems, and 

limits of validity for some approximations in reactor dynamics. 

Seeker and Weaver [27, 28] investigated optimal closed-loop control 

using a set of equations linearized around a nominal trajectory, and a 

quadratic performance index. Application of Pontryagin's maximum 

principle led to a matrix Riccati equation. The optimal filter for 

state-variable estimation was derived using Kalman's method for 



differential systems, and a matrix Riccati equation was solved for the 

optimal gain. The resulting closed-loop control system required storage 

of the preprogrammed control variable and nominal state trajectory. 

Melsa [29, 30] extended the work reported previously by Weaver 

et al. [26]. Suboptimal control with a singular control matrix was 

investigated and applied to the control of a nuclear rocket. 

Kliger [31] defined a control variable which was equal to the 

product of neutron flux density and reactivity and made the neutron 

kinetics equations linear. Reactivity was recovered as a true input 

control quantity by dividing the control variable by the measured flux. 

He applied the maximum principle to the problem using an integral 

performance index, and obtained the optimal control function in terms 

of the state and adjoint variables. Using back substitution, he then 

solved for the control function in terms of the state variables. An 

estimator was designed to generate the delayed neutron states from 

neutron flux measurements. 

Duncombe (32, 33, 34] used the same linearizing approximation as 

Kliger to investigate on-line optimization of nuclear reactor load 

control in the presence of nonlinearities. To carry through this 

simplification, the performance index included a term of reactivity 

times flux squared. Based on this approximation, the results obtained 

by Duncombe must be judged accordingly. The optimal closed loop solu

tion was obtained by using the maximum principle and deriving a matrix 

Riccati equation. The solution of the matrix Riccati equation varied 

with the varying load demand. To apply the correct feedback at each 

instant, it was necessary to calculate the parameters of the feedback 

network in effectively zero time. An analog computer was used to solve 
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the matrix Riccati equation in 0.1 real time and to simulate the reactor 

plant. All of the state variables were obtained from the simulation. 

In his conclusions, Duncombe pointed out that in an actual application, 

the reactor plant simulation would be replaced by the reactor itself, 

however, he did not state that a state estimator would be necessary to 

generate non-measurable variables. 

Monta and Lennox [35] investigated time-optimal digital computer 

control for the NRU reactor by applying the method of Desoer and 

Wing [36]. 

Kliger [37] extended his work [31] to analysis of an optimal con

trol system for nuclear reactors with a generalized temperature 

feedback. The problem was subdivided such that a specific controller 

yielded the coolant flow and neutron density to minimize a performance 

index, and a universal controller forced the reactor neutron density to 

follow the desired neutron density. The maximum principle was applied, 

and the resulting set of equations was solved to obtain the optimal 

control law. The control law required all state variables, so an 

estimator was designed to generate delayed neutron estimates from 

neutron flux measurements. 

Sokolova [38] analyzed the problem of determining an optimum con

trol law for a nuclear power plant. A set of 29 differential equations, 

bilinear in the state variables and in the state and two control 

variables, was used to describe the plant, which consisted of a reactor, 

a regenerator, a cooler, and a turbocompressor. A quadratic perfor

mance index was used, and dynamic programming was applied. Two control 

equations were derived: one linear in the state variables and the other 

nonlinear. Lyapunov's method was applied to guarantee stability of the 



control system. Implementation of the control scheme required that all 

state variables be measurable. 

Weaver et al. [39] investigated: optimal feedback control of 

nuclear reactor systems, modeling with Lyapunov functions, and linear 

system design using state variable feedback. The optimal control 

investigation used the linearizing substitution of Kliger [31]. A 

quadratic error index and prompt reactor model were used and a time-

varying gain was obtained for the optimal feedback control by means of 

Bellman's equation. The analysis was repeated on reactor models using 

prompt nonlinear, linear delayed, and nonlinear delayed neutrons, with 

and without feedback. The developed methods were then used to analyze 

the start-up of a nuclear rocket. 

Higglns [40] and Higgins and Schultz [41] investigated the 

stability of certain nonlinear time-varying systems of automatic con

trol. They used the second method of Lyapunov, the Popov frequency 

criterion, and the matrix inequality method. As an example, the 

stability theory was applied to the simplified nuclear rocket propulsion 

system considered by Mohler (1962). 

Monta [43, 44, 45] investigated the time-optimal control of nuclear 

reactors. One group of delayed neutrons and a prompt jump approximation 

were assumed. The maximum principle was used to derive the switching 

trajectories in state space, with and without constraints. The discrete 

version of the maximum principle was used to analyze a system with a 

pulse-width-modulated-reactivity input. An experiment was performed 

on the Toshiba Training and Research Reactor using a digital control 

computer. Computing time delay, control rod motor time constant. 
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one-group approximation, and reactivity estimates had to be taken into 

account for practical reasons. 

Humphries [46, 47] used a parameter adjustment model to investigate 

adaptive control of a nuclear rocket engine. The proportional control 

gain for the control poison was the parameter adaptively adjusted and 

the maximum core surface temperature was the variable adaptively 

controlled. The performance index consisted of the integral squared 

response error, which was formed by comparing the system output with 

that of the reference model. To evaluate the performance index, the 

nuclear rocket engine equations were linearized, the prompt neutron 

lifetime was set equal to zero, and the effects of delayed neutrons were 

neglected. Parseval's theorem was used to evaluate the performance 

index as a function of gain. It was shown that propellant savings of up 

to 20,000 pounds per transition from idle to full power are possible 

with adaptive control. 

Saluja [48], and Saluja, Sage, and Uhrig [49] analyzed open and 

closed-loop control of nuclear systems. Three performance Indices were 

considered: integral of reactivity squared, integral of reactivity 

squared and neutron density deviation squared, and the previous index 

with reactivity set equal to a proportional flux integral function of 

neutron density error. The maximum principle was applied, and quasi-

linearization was used to solve the resulting two-point boundary value 

problem. Convergence was obtained in no more than four iterations for 

all problems. The suboptimal closed-loop control law yielded poorer 

performance than the open-loop control law. It was suggested that an 

adaptive-type control be considered to improve performance. 
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Ellis [50], and Sage and Ellis [51] presented a sequential sub-

optimal adaptive control philosophy which encompassed both identifica

tion and control. A general nonlinear differential system was modeled 

by a linear time varying system of assumed form. The system was 

assumed stationary over subintervals of time. This allowed a controller 

to generate a sequential control law which minimized an integral of time 

weighted quadratic form of error and control effort. The method was 

used to generate an optimum closed-loop control for the start-up 

dynamics of a nuclear reactor system. 

Masters [52], and Sage and Masters [52] derived a sequential method 

for on-line estimation of the state variables and parameters of 

discrete, nonlinear, dynamic systems. The discrete version of the 

maximum principle was employed to obtain the canonic equations of tlie 

least-squares optimal estimator. Also, a discretized invariant 

imbedding technique was applied to solve the resulting two-point bound

ary value problem. A system of sequential equations was then obtained 

by application of variational methods to the optimal trajectory. The 

estimation procedure provided the best least-squares estimate of the 

state vector, given noisy measurements at discrete intervals of time. 

The method was applied to a nuclear reactor, with a single group of 

delayed neutrons, and the system state and one parameter were 

estimated. 

Ogawa, Kaji, and Ozawa [54] analyzed the time-optimal control of 

nuclear reactors with two kinds of internal feedback: a prompt feedback 

generated by variations of fuel temperature and coolant density, and a 

delayed feedback governed by variations of moderator temperature. 

System stability was examined by investigating the behavior of the 



14 

linearized system near an equilibrium point. The maximum principle 

was applied to the quasilinear system to obtain the optimum control law. 

Rasetti and Vallauri [55] discussed the maximum principle and 

dynamic programming. A nuclear propulsion plant for a commercial ship 

with four steam generators and one pressurizer was analyzed for time-

optimal control using the maximum principle. The canonical equations 

were compared to the results obtained by applying Bellman's equation. 

Tataru, Bajenescu, and Ghetaru [56] considered the closed-loop 

regulator problem of a nuclear reactor. The small signal transfer 

function of a reactor was used. A scheme was derived to keep the loop 

gain constant by using a perturbing signal and a computing device to 

offset gain changes caused by power level changes. 

Partaln [57], and Partaln and Bailey [58, 59] studied the 

application of Z transforms to linearized kinetics equations. Digital 

simulation was used to investigate system behavior. 

Herring [60], Herring et al. [61], Weaver [62] and Weaver and 

Vanasse [68] developed a method for designing control systems by using 

state variable feedback. This method was applied to a two-temperature-

region reactor and to a coupled-core reactor. Linearized transfer 

functions were used for the reactor systems. A method also was outlined 

for generating non-measurable state variables by placing frequency 

dependent elements in the feedback path, 

Miyazaki [63] applied Wiener's theory [6] of least-squares 

optimization with quadratic constraint to the design of reactor control 

systems. The deterministic case was investigated by taking the 

integral square error for the criterion function and the integral square 

of reactivity rate for the control function. The stochastic case was 
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studied by substituting the mean-square error and mean-square 

reactivity rate, respectively. Transfer functions for various step 

sizes and ramp inputs were derived. 

Habegger [64], and Habegger, Bailey, and Kadavanich [65] applied 

quasillnearization and Kalman filter techniques to estimate nuclear 

parameters in the EBWR, PUR-I, and EBR-II reactors. 

Melsa et al. [66] investigated: system identification using a 

random search method, data reconstruction using non-resetting 

integrators, and sub-optimal closed-loop control using invariant 

imbedding. 

Mohler [67] analyzed the fuel-optimal control of a nuclear propul

sion system by means of the maximum principle, Lagrange multipliers and 

computers. Practical problems were shown to be complicated by state 

constraints and high dimensionality. A minimum-time, prompt-neutron 

control process with reactivity rate and amplitude constraint was 

analyzed. 

« 
Mohler and Price [69, 70, 102] investigated application of linear 

programming procedures to optimal control of nuclear rocket reactors 

which had inequality magnitude constraints imposed on the control and 

state. Nonlinear equations were transformed into a form suitable for 

linear programming by using a first-order Taylor series expansion. 

Marciniak [71, lOI] studied the time-optimal digital control of 

zero power nuclear reactors. Sampled-data control system theory, 

including Z-transforms and discrete state variables, was used to design 

a control system which would: increase power level while maintaining a 

minimum period, and reach demand power level with little, or no, 

overshoot. Of the various data-holds investigated, the zero-order hold 
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as the most stable. A time optimal study was made of a one-group 

delayed neutron reactor using the maximum principle, and the switching 

equation was derived. This switching equation and the zero-order hold 

were used to derive a control program, which was applied to noise-free 

reactor models simulated on a digital computer. A modified version 

of the control program was used on the Argonne Thermal Source Reactor. 



CHAPTER 3 

REACTOR DYNAMICS 

3.1 Introduction 

The derivation of the nuclear reactor kinetics equations, starting 

from neutron physics fundamentals, is well documented. These include 

treatments of the subject by: Glasstone and Edlund (72, Weinberg and 

Wigner [73], Meghreblian and Holmes [74], Isbin [75], or Ash [76], and a 

handbook presentation by Radkowsky [77]. An excellent treatment on 

general reactor dynamics is given by Gyftopolous [78], and the specific 

subject of fast reactor kinetics is treated by McCarthy and Okrent [79]. 

A discussion of the general subject of reactor dynamics and control is 

given by: Ash [76], Harrer [80], Keepin (81], Schultz (82], and Weaver 

[83, 84]. * 

3.2 Six-group delayed neutron model 

The point-model kinetics equations for a nuclear reactor are: 

dn(t) ̂  <5k(t) - g 
dt - C ^ 

n(t) + y X.c.(t) (3.1) 
7 1 1 

and 

dc,(t) 6 
^ n(t) - \.c.(t) i = I,...,6 (3.2) 

dt « " 1 1 

where 

n(t) = neutron density 

4k(t) = reactivity 

6 = total delayed neutron fraction 
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^ = neutron lifetime 

X . = decay constant of the ith neutron precursor 

c.(t) = concentration of delayed neutrons of group 1 

6. = delayed neutron fraction of group 1 

Reactor power level is proportional to neutron density. At low 

power levels, reactivity is not a function of the neutron density; 

therefore Eqs. (3.1) and (3.2) are commonly referred to as the zero 

power kinetics equations. 

In Eq. (3.1) reactivity is a function of time, and for this condi

tion, Eqs. (3.1) and (3.2) are linear with time varying coefficients. 

At high power levels, reactivity is a function of the neutron density, 

and the equations become nonlinear. 

The values of A. and B. for U-235 fueled fast reactors [85, p. 18] 

are listed in Table 3.1. 

TABLE 3.1 

DELAYED NEUTRON YIELD FROM FAST FISSION IN U-235 

0.0127 

0.0317 

0.115 

0.311 

1.40 

3.87 

0.000247 

0.00138 

0.00122 

0.00265 

0.000832 

0.000169 

0.038 

0.213 

0.188 

0.407 

0.128 

0.026 

The relative abundance is given by a^ = B./g. The total delayed 

neutron fraction is obtained from 6 = l& , and for the 



values of 6 in Table 3.1, B = 0.0065. Typically, I = 10"^ sec for a 

fast reactor. 

If the following variables are defined 

a = B/H (3.3) 

Oj - 6̂ /£ (3.4) 

p(t) = 6k(t)/6 (3.5) 

and substituted into Eqs. (3.1) and (3.2), then 

'n(t) = ap(t)n(t) - an(t) + I Â c (t) (3.6) 
1 

c^(t) = a^n(t) - A^c^(t) 1 = 1,...,6 (3.7) 

where the dot notation designates the derivative with respect to time, 

and p is reactivity in dollars. Typically, |p|<l. 

At equilibrium, the time derivatives are equal to zero, which on 

solving Eq. (3.7) gives 

c^(0) = a^n(0)/X^ (3.8) 

The delayed neutron concentration can be normalized by defining 

z^(t) = (Â /c.) c^(t) (3.9) 

Substitution of Eq. (3.9) into Eqs. (3.6) and (3.7) results in a set of 

normalized equations 

n(t) - ap(t)n(t) - an(t) + a T z,(t) (3.10) 
i ^ 

i^(t) = A^ [a^n(t) - z^(t)] 1=1,...,6 (3.11) 

where the equilibrium solution requires that z (0) = a.n(O) and 

J_ z. (0) = n(0) because l a . = 1 . 
i i ^ 
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3.3 Transient response of six-group model 

For a step input of reactivity, the kinetics equations can be 

solved by application of the Laplace transform. Under the conditions of 

a step input p(t) = p, a constant. This constant value of reactivity is 

substituted into the equation before transformation. The initial condi

tions of n(0) and z.(0) are the values of n(t) and z^(t) which exist 

just prior to the step addition of reactivity. 

With p set equal to a constant, taking the Laplace transform of 

Eqs. (3.10) and (3.11) results in 

sN(s) - n(0) = apN(s) - aN(s) + a I Z^(s) (3.12) 

sZ^(s) - z^(0) = A^[a^N(s) - Z^(s)] 1=1,...,6 (3.13) 

Equation (3.13) is solved for Z.(s) to give 

a.A. z.(0) 

î(̂ ) = rrf:'^(^^ + 7TT- 1 = 1....,6 o.u) 
1 1 

Equation (3.14) is then substituted into Eq. (3.12) to obtain an equa

tion for N(s). Thus 
6 z.(0) 

"(0) + « I 7TT-
N(s) = ^^ g-^ (3.15) 

s + o(l - p) - o ^ I ^ 
1=1 ^ "̂  ^1 

Remembering that I a. = 1, the denominator of Eq. (3.15) can be 
1 

rearranged to yield: 

6 2.(0) 
n(0) + a I j ^ - ^ 

1=1 ^ * -̂• 
N(s) = g ^ - — (3.16) 

s - ap + a 5_ 

''^ ^1 1=1 ^ + ̂ • 

Equation (3-16) is valid for any arbitrary Initial conditions of n(0) 

and z^(0). If the system is at equilibrium before the reactivity 
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addition, then 

z^(0) = a^n(O) (3.17) 

and substitution of Eq. (3.17) into Eq. (3.16) results in an expression 

of N(s) as a function of the initial neutron density. Thus 

6 a. 

1=1 ̂  "̂  \ 

N(8) - ^^-!-g—irr~°^°^ "-^^^ 
- ap . , s + 1=1 " • ̂ 1 

In order to find the inverse Laplace transform of Eq. (3.18), the 

roots of the denominator must be known. If the numerator and denomina

tor of Eq. (2.18) are multiplied by the factors s + A., a seventh-order 

polynomial in s is obtained for the denominator, with coefficients con

sisting of complicated combinations of products and sums of the 

A (82, pp. 110-111]. This polynomial is then factored for the roots. 

An alternate method is to apply iteration to the denominator of 

Eq. (3.18) by means of the Newton-Raphsontalgorithm [86, p. 78) as 

follows: 
F(s_) 

" (3.19) 
°n+l " n F'(s ) 

n 

which converges quadratically to yield the solution of F(s ,.) " 0 with 

a.s 
F(s) = s - ap + a y '; (3.20) 

^ s + A^ 

where F(s) is the denominator of Eq. (3.18) and F'(s) is the derivative 

of F(s) with respect to s. 
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S u b s t i t u t i o n of Eqs. (3.20) and (3.21) i n to Eq. (3.19) r e s u l t s i n 

a . s 
r i n 

s - ap + a ) . , 
n ^ s + A 

J- n J- (3 .22) 
^n + 1 ~ ^n " a.\^ 

1 + " I ( s ' + A. )2 
i n 1 

which can be rearranged as fo l lows: 

a , s 2 
V i n 

P - I ( s + A. 
n + 1 , a.A 

. -- . )2 
^ " 1 ( 3 .23 ) 

i + y LJ: 
a 4 (s + 

. . A. )2 
i n 1 

In order for Eq. (3.23) to converge, suitable initial values must be 

chosen for the various roots. For positive p, one root is positive and 

all others are negative and range between the A. values [76, p. 32]. 

For p negative, all seven roots are negative. The most negative root 

is approximately equal to a(p - 1). 

Equation (3.18) can be expressed as a partial fraction expansion. 

That is, 

7 B. 

^(^) = I , -\ "(0) (3.24) 

Since the poles of Eq. (3.18) are simple, the coefficients B of 

Eq. (3.24) can be obtained from: 

a 
1 

(3.25) 

. s + A. 

^ n(0) 
F'(s) 

where F'(s) is given by Eq. (3.21). 
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The Roots of Prompt Jump Equation computer program which finds the 

s and calculates the corresponding BJ is listed in Appendix G. 

Table 3.2 lists the s and B for a step input of p = 0.1. 

TABLE 3.2 

ROOTS OF KINETICS EQUATIONS AND TRANSIENT 
RESPONSE COEFFICIENTS FOR p= 0.1 

.01046741 

-.01438199 

-.06525568 

-.19093692 

-1.2253240 

-3.7713468 

-58,500.482 

1.2924847 

-0.03533592 

-0.08955314 

-0.04046886 

-0.01346368 

-0.00255375 

-0.11110930 

The solution for the neutron density as a function of time, 

obtained by taking the inverse transform of Eq. (3.24), is 

I 8 1 

n(t) = I B^e ̂  
7 s.t 

I 
1=1 

(3.26) 

The time constant corresponding to the most negative root in Table 3.2 

is 17 ysec. If Eq. (3.26) is evaluated at t = 0.001 sec, using the 

values in Table 3.2, n(0) = 1.0, and the Reactor Response to Step 

Delta K computer program listed in Appendix G, then n(O.OOl) = l.lll. 

The flux has jumped 11.1% in 1 msec, and remains at this level until tne 

terms in Eq. (3.26) with longer time constants oegan to exert their 

Influence. 
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3.4 Prompt-jump approximation 

In the analysis which follows, detailed reactor transient behavior 

at times less than 1 msec will not be of interest. 

Transient behavior in this case can be adequately described by 

employing the prompt-jump approximation. Setting n(t) = 0 in 

Eq. (3.10) results in 

6 
0 = ap(t)n(t) - an(t) + a I z (t) (3.27) 

1=1 

which is then solved for n(t) : 

6 

I 2i(t) 

The neutron density is eliminated from Eq. (3.11) by substituting Eq. 

(3.28) for n(t) to obtain 

6 
.a. y z.(t) 
1 1 .'•, 1 

^i(^> = 1 -'p(t) ^i^(^) "•2^> 

Reactor response to a step input can be determined by moans of 

Eqs. (3.28) and (3.29). For the case of equilibrium conditions prior 

to the step, p = 0 and I z.(O-) = n(0-). Immediately after the step 

n(0+) = ^ - ^ n(0-) (3.30) 

and n(t) has Increased by the factor 1/(1 - p ) . If p = 0.1, 

r ^ y = 1-111 (3.31) 

which is the same as the transient response calculated previously for 

t = 0.001 sec and n(0) = 1.0. 



3.5 One-group delayed neutron model 

A further reduction in system dimensionality can be achieved by 

considering a single group of delayed neutrons. With this assumption, 

Eqs. (3.10) and (3.11) become 

n(t) = ap(t)n(t) - an(t) + oz(t) (3.32) 

z(t) = A(n(t) - z(t)] (3.33) 

The single-group decay constant A must be suitably chosen if the one-

group approximation is to provide useable results. In previous 

applications of the approximation, A has been selected on the basis of 

best asymptotic behavior as t-*<». This method of selection is not the 

best for studying transient behavior at times of the order of one 

second; therefore an alternate method based on a matching of the 

transient response is proposed. 

3.6 Transient response of one-group model 

The transient response of the one-group model to a step input of 

reactivity can be determined by taking the Laplace transform of Eqs. 

(3.32) and (3.33) or equivalently modifying the six-group result of Eq. 

(3.16) to give 

n(0)+f^ 
N(s) = 5-^^-^— (3.34) 

, as 

= - °p * r r r 
which alternately can be written 

N(s) = (s^/)"(0) +az(0) (3.33) 
s2 + (A + a - ap)s - apA 

Given the numerical values of A, a, and p, the roots of Eq. (3.35) may 

be calculated directly. These roots may be approximated by using 
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the quadratic formula and the product relationship of the roots to 

obtain 

si % Ap/(1 - p) (3.36) 

S2 % -a(l - p) - A/(l - p) (3.37) 

assuming that A<<a. 

The partial fraction expansion and inverse transformation of Eq. 

(3.35), using the roots given by Eqs. (3.36) and (3.37), results in 

3.7 Transient response of one-group prompt-jump model 

The prompt-jump approximation can be applied to Eq. (3.32) by 

setting n(t) = 0 and solving for n(t). Then 

/^\ _ z(t) 
"̂ •"̂  ^ 1 - p(t) (3.39) 

This solution for n(t) is substituted into Eq. (3.33) to obtain an 

equation in z(t) and p(t). Thus 

;(t) - ^P(t)z(t) 
^ ' 1 - p(t) (3.40) 

The solution of Eq. (3.40) is 

z(t) = z(0) exp I] ^MLL_^ , , ^3_^^^ 

and the flux density solution is obtained by substituting Eq. (3.41) 

into Eq. (3.39) to obtain 



/ N z ( 0 ) 
" ( ' ) = 1 - p ( t ) " ' P 

t 
^ ^ ^ d t (3.42) _ 1 - p ( t ) 

If p - 0 for t<0 , then z(0) = n ( 0 ) , and Eq. (3.42) becomes 

"̂ '> = r ^ ^ - [ r ^ <̂̂  

If reactivity is constant, then p(t) = p, and Eq. (3.43) becomes 

n(t) = r ^ exp (Apt/(1 - p)] (3.44) 

The same result is obtained from Eq. (3.38) for t>0.001 sec because 

the contribution from the second exponential term is then negligible. 

3.8 Selection of one-group decay constant 

In later analyses, reactor transient behavior will be examined in 

response to input signals occurring at one second intervals. It is 

therefore desirable to select a A which will provide the best approxi-

mate transient response at the end of one second. For the case of 

p - 0.1, n(0) = 1.0, and t = 1 sec, Eq. (3.43) is set equal to Eq. 

(3.26) using the values in Table 3.2. This results in \ = 0.312. This 

value of A will be used in subsequent calculations which utilize the 

single-group model. Note that, within accuracy limits, this particular 

value of A coincides with one of the intermediate values of A listed 

in Table 3.1. 

3.9 Reactivity input 

Reactivity changes in an actual system are effected by a control 

rod mechanism. Figure 3.1 shows a block diagram of a reactivity input 

system. 



INPUT 

u(t) 

CONTROL ROD 

MOTOR 

CONTROL ROD 
POSITION 

r(t) 

REACTIVITY 

p(t) 

Fig. 3.1 Reactivity input system 

The gain K has been included in Fig. 3.1 to account for the control rod 

calibration in terms of units of reactivity for units of position. 

The control rod motor transfer function is given by 

R(s) K 

U(s) s(l + sT ) 
m 

which can be expressed as a differential equation as follows: 

r(t) + T r(t) = K u(t) 
m m 

(3.45) 

(3.46) 

If it is assumed that the motor time constant is negligible, then Eq. 

(3.46) reduces to 

r(t) = K u(t) (3.47) 
m 

Reactivity is related to control rod position by 

p(t) = K^r(t) 

which upon substitution into Eq. (3.47) yields 

p(t) = KKu(t) 

(3.48) 

(3.49) 

If K K is set equal to one, then the units of u(t) are given directly 

in dollars per second, and Eq. (3.49) becomes 

p(t) = u(t) (3.50) 

Equation (3.50) shall be used in subsequent analysis to express the 

functional dependence of reactivity on an input. 



CHAPTER 4 

STATE SPACE REPRESENTATION OF REACTOR DYNAMICS 

4.1 Introduction 

The classical methods of control system analysis and design are 

based on input-output relationships of systems generally represented by 

one nth order differential equation. Modern control theory utilizes the 

concepts of state space and state variables, and an nth order system is 

represented by a set of n first-order differential equations. 

The selection of a set of state variables to represent a system 

described by one nth order differential equation is not unique. In the 

case of reactor kinetics, formulation of system equations from physical 

considerations has led to a natural selection of state variables, and 

the system is initially described by n first»order differential 

equations. 

It is convenient to first apply the concept of state space to a 

reactor with one group of delayed neutrons and then extend it to a 

reactor with six groups. For the one-group reactor, the neutron density 

n(t) and delayed neutron precursor density c(t) are the two variables 

which uniquely describe the state of the reactor at any time t. The 

state space for the reactor is two dimensional, a plane, and its 

coordinates are n(t) and c(t). The two coordinates are specified by a 

pair of ordered numbers, a vector. The state of the reactor at any time 

t can be associated with a point in a plane. Given n(tQ) and c(tQ), 



which determine the reactor state at any time to, and the reactivity 

P(t) for t > to, the future behavior of the reactor can be predicted by 

solving the system differential equations, and the change in system 

state is traced as a line in the state plane. If the system is simula

ted on an analog computer, the neutron density and delayed neutron 

concentration can be individually displayed on digital meters, 

individually recorded as a function of time, and plotted on an X-Y 

recorder. The readings from the two digital meters provide information 

on the Instantaneous state, and the X-Y recorder traces a line in the 

state plane. The individual recordings provide a parametric display as 

a function of time. 

If two groups of delayed neutrons are used to describe the reactor, 

then the state space is three dimensional and has the coordinates n, Ci, 

and C2. Specifying the values of n, Ci, and C2 at any time t locates a 

point in the three dimensional space which describes the state of the 

reactor. If the reactivity P(t) is given, the future behavior of the 

reactor is traced as a line in the three dimensional state space. The 

values of n, ci, and C2 at any instant are represented by an ordered set 

of numbers, a vector. The term vector is applied to the unique 

description of a point by an ordered set of numbers and is not intended 

to imply a directed line segment from the origin. An analog computer 

simulation will require three digital meters and three recorders. Since 

three-dimensional X-Y-Z plotters are not available, projections on the 

X-Y, X-Z, and Y-Z planes may be recorded to afford an indirect 

visualization of system behavior in the state space. The readings from 

the three digital meters provide information on the instantaneous state. 



and the individual recordings provide a parametric display as a function 

of time. 

With six-groups of delayed neutrons, the state space is seven-

dimensional, and seven differential equations are used to describe the 

system. An ordered set of seven numbers, a vector, describes the system 

state at any Instant of time. An analog computer simulation requires 

seven digital meters and seven recorders. Twenty-one X-Y plotters would 

be required to plot all paired combinations of variables if the display 

method of the three dimensional case was to be extended. In this case, 

the change in system state cannot be visualized in three dimensional 

space, but the readings from the seven digital meters specify the 

instantaneous state and the individual recordings provide the parametric 

display as a function of time. The ordered set of meter readings gives 

the numerical value of the system state vector at any instant. 

The above discussion may be summarized as follows; n state vari

ables X ] , X2> ^3 ^ are needed to describe completely the behavior 

of a system described by a set of n first-order differential equations. 

The set of n state variables can be considered as n components of a 

vector X, called the state vector. A state space is an n-dimensional 

space in which Xi, X2 x are the coordinates. The state of the 

system at time t can then be represented by a point in an n-dimensional 

state space. The locus of points in the state space is called a 

txKijectory. 

Vector-matrix notation is convenient for the representation of 

system differential equations in state-space analysis. The solution of 

vector-matrix differential equations is discussed briefly in Appendix A. 

Detailed treatments of state-space analysis and vector-matrix equations 
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have been published by: Zadeh and Desoer [87], DeRusso, Roy, and 

Close [88], Gupta [89], Ogata [90], Timothy and Bona [91], and Chen and 

Haas [92]. 

^•2 Six-group representation 

Using vector-matrix notation, Eqs. (3.1) and (3.2) can be written: 

-Al 0 0 0 0 0 3i/2. 

0 -A2 0 0 0 0 62/1 

0 0 -A3 0 0 0 Bs/^ 

0 0 0 -A^ 0 0 B4/JI 

0 0 0 0 -A5 0 Bs/il 

0 0 0 0 0 -Ag Be/*. 

Ag [6k(t)-6]/ll 

(4.1) 

On defining the generalized state vector: 

Xl 

X2 

X3 

x^ 

X5 

X6 

X7 

3 

Cl 

C2 

C3 

Clt 

C5 

C6 

n 

Eq. (4.1) can be rewritten in the form 

x(t) = A(t)x(t) 

where 

(4.2) 

(4.3) 
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-Al 0 0 0 0 0 Bi/i 

0 -A2 0 0 0 0 &2l^ 

0 0 -A3 0 0 0 63/11 

A(t) = 0 0 0 -A^ 0 0 i,i,ll 

0 0 0 0 -A5 0 65/1 

0 0 0 0 0 -Ae Be/i 

_Ai A2 A3 A4 A5 Ag (6k(t)-6]/i_ 

As shown in Appendix A, the solution of Eq. (4.3) is given by 

x(t) = *(t,to)x(to) 

where if(t,to) is the state transition matrix. 

(4.4) 

(4.5) 

Similarly, Eqs. (3.10) and (3.11) can be written as Eq. (4.3) with 

'zi(t)1 

Z2(t) 

Z3(t) 

x(t) = zu(t) (4.6) 

Z5(t) 

Z6(t) 

n(t) 

and 

A(t) = 

^1 

0 

0 

0 

0 

0 

-A2 

0 

0 

0 

0 

0 

-^3 

0 

0 

0 

0 

0 

-\^ 

0 

0 

0 

0 

0 

-^5 

0 

0 

0 

0 

0 

Aiai 

^2^2 

^333 

Xî a^ 

^535 

0 -Af ^6^6 

a. a a[p(t)-l] 

(4.7) 
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^ • 3 S i x - g r o u p p r o m p t - j u m p r e p r e s e n t a t i o n 

The m a t r i x e q u a t i o n c o r r e s p o n d i n g t o Eq. ( 3 . 2 9 ) i s 

z ( t ) 

w i t h 

2 ( t ) = 

A ( t ) z ( t ) 

z i ( t ) 

Z 2 ( t ) 

Z 3 ( t ) 

Z 5 ( t ) 

Z 6 ( t ) 

and 

A ( t ) = 
1 - p ( t ) 

A i ( p ( t ) + a i - l ] Aia i Aia i 

A2a2 A 2 [ p ( t ) + a 2 - l ] A2a2 

^3^3 

Ai,at+ 

Xia i 

A2a2 

Xja i 

^2^2 

A3a3 A3(p( t ) -Ka3-1] A3a3 X^a^ 

Ai,a4 Ai+a^ Ai+(pCt)+ai4-l] Xi^a^ 

X i a i 

^2^2 

^3^3 

Ai,ai, 

Aca 5^5 

^^eae 

(4.8) 

(4.9) 

^5^5 ^5^5 A5(p(t)-ha5-l] Asas 

^6^6 ^6^6 ^6^6 Ag[p(t)-(-a6- 1] 

(4.10) 

4.4 One-group r e p re sen t a t i on 

The k i n e t i c s equat ions with one group of delayed neu t rons , 

Eqs. (3.32) and (3 .33 ) , can be wr i t t en In matr ix no t a t i on as Eq. (4.3) 

with 

x ( t ) 
rz(t)' 
Ln(t). (4.11) 
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and 

A(t) = 
-A A 

o a(p(t) - 1] 
(4.12) 

If reactivity is constant with p(t)=p, then the system equation is 

x(t) = Ax (4.13) 

where 

A = 
-A A 

a a(p - 1) 
(4.14) 

The solution of Eq. (4.13) can be obtained, as shown in Appendix A, by 

taking the Laplace transform of Eq, (4.13) to obtain 

sX(s) - x(0) = AX(s) (4.15) 

which can be solved for )C(s): 

X(s) = (si - A]-'x(0) (4.16) 

where I is the unit matrix. Equation (4.16) can be written in terms of 

the Laplace transform of the state transitibn matrix •(t) as 

X(s) = t(s)x(0) (4.17) 

where •(s), the resolvent matrix, is given by 

*(s) = [si - A]-l (4.18) 

Taking the inverse Laplace transform of Eq. (4.18) results in 

*(t) = £"'(sl - A]"^ (4.19) 

where *(t) is the state transition matrix. Using Eq. (4.19), the 

inverse transform of Eq. (4.17) can be written as 

x(t) = *(t)x(0) (4.20) 
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For the matrix defined by Eq. CA.14) 

"s-HA - A 
sI-A = 

-o s-ki(l-p) 

and *Cs) i s given by 

s-h>(l-p) A 

C4.21) 

t(s) 
s2+(A+a-op)s-Aap s2+CA+a-op)s-Aap 

a s+A 
s2-h(A+a-ap)s-Aap s2-|-CA-l-o-ap)s-Aap 

(4.22) 

If the root approximations given in Eqs. (3.36) and (3.37) are 

substituted into Eq. (4.22), then 

s-H> (1-p ) A 

*(s) 
(s-si)(s-S2) (s-si)(s-S2) 

o s•^A 

(s-si)(s-S2) (s-Ei)(s-S2) 

(4.23) 

where 

si = Ap/(1 - p) 

S2 = -a(l - p) - A/(l - p) 

(4.24) 

(4.25) 

The state transition matrix is obtained by taking the inverse Laplace 

transform of Eq. (4.23): 

*(t) 
't'll(t) <()12(t) 

it'2l(t) <ti22(t) 
C4.26) 

where 

<l'll(t) = 

'i'iz(t) 

[0.(1 - p)2 + Ap]e^l'^ -t- Ae^Z*^ 

a(l - p)^ + ACl -I- p) 

A(l - p)(e"l^ - e^2S 
a d - p)2 + A(I -I- p) 

CA.27) 

(4.28) 



,, \ / sit S2t 
* (f\ . a(l - P)(e^ - e M 
•21^'' a(l - p)2 + A(l + p) 

*22(t) 
Aê '*̂  + [aCl - P)^ + ̂ P]e^2t 

a(l - p)2 + A(l + p) 

(4.29) 

(4.30) 

For t = 0, Eq. (4.26) becomes 

*(0) 
1 0 

0 I 
(4.31) 

which is one of the properties of the state transition matrix. 

The solution for n(t) given by Eq. (4.20). with *(t) given by 

Eq. (4.26), is identical to the result obtained previously in 

Eq. (3.38), except that Eq. (4.20) gives, in addition, the solution 

for the second state variable z(t). 

4.5 One-group prompt-jump representation 

The system based on the prompt-jump approximation is described by 

Eqs. (3.39) and (3.40). If the reactivity input is considered, the 

system equations are augmented by including Eq. (3.50) as follows: 

Apz 
I 

1 - P 

These equations are expressed in matrix notation as: 

jc = f^(it, u ) 

y = h(x) 

where 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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f = 
fl(z, p)' 

f2(u) 

and 

fl(z, p) = . ^ 
1-p 

f 2 (u) = u 

y = n 

h(3c) = h(z, p) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 
1 - P 

Equation (4.35) is the system nonlinear vector-matrix differential 

equation, and Eq. (4.36) is the scalar nonlinear measurement equation. 

The system has a single Input u and a single output y. 

4.6 Linearization of the system and measurement equations 

The system and measurement equations are linearized by considering 

small perturbations about nominal values of the neutron density n*, 

normalized precursor level z*, and control input u*. To find the 

differential equations relating the deviations, expand Eq. (4.35) in a 

Taylor series 

X = f(x*, u*) -̂  
31 

3i 
sir 

(x - X*) 

(u - u*) + (4.43) 

Define 

6x (4.44) 
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6u = u - u* 

note that 

X* = £(x*, u*) 

then 

(4.45) 

(4.46) 

6x = X - X* (4.47) 

Finally, substitute Eqs. (4.44), (4.45), and (4.47) into Eq. (4.43), 

retaining only first-order terms, to obtain 

3f 3f 
<5x = -7— 6x -̂  T— 6u 
— 3x . — 3u .t 

(4.48) 

where 

3x 

3fl ... llj 

3x1 3x 

3fn 3fr 
3xi *•* 3x^ 

(4.49) 

and 

iu 

iii 
3u 

3fr 
3u 

(4.50) 

The measurement equation (4.36) is similarly expanded to obtain 

y = h(x*) + 1 ^ (x - X*) -K 
2̂1 Ix* ~ -

(4.51) 

which can be written 

dX . — 
(4.52) 
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where 

i5y = y - h(3c*) 

and 

3x 

By d e f i n i n g 

3h , _ 3h_ 
3x1 3x 

and 

A = 

D = 

H = 

3 ^ 

3f_ 

3u 

121 
3x 

E q s . ( 4 . 4 8 ) and ( 4 . 5 2 ) can be w r i t t e n 

6x^ = A6JC + D6u 

6y = H6x 

(4.53) 

(4.34) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

The matrices A, D, and H corresponding to Eqs. (4.32), (4.33) and 

(4.34) are 

A = 

D = 

Ap* Az* 
1-p* (1 - p*)2 

0 0 

b' 

1 

1 - p * (1 "P*FJ 

(4.60) 

(4.61) 

(4.62) 



For the particular case in which the reactor is at equilibrium, the 

nominal values are: z* = 1.0, p* = 0, and u* = 0, and the system and 

measurement equations become 

41 

6x 
0 A 

0 0 
6x + Su 

6y = [l l] 6x 

where 

6x 

(5u 

z - 1.0 

P 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

and 

&y = n - 1.0 = 6n (4.67) 

4.7 Solution of the state-space equations with discrete-time inputs 

For a discrete-time Input, u is constant for T seconds which can be 

expressed as 

u(t) = u. kT<ti.(k + 1)T C4.68) 

After substituting Eq. (4.68) into Eq. (4.33) and integrating. 

p(t) = p(tj^) + Uĵ (t - t^) 

which can be written 

p(t) = P^ + u^(t - t^) 

(4.69) 

(4.70) 

where p, is the reactivity at the beginning of the interval. Equa

tion (4.70) is substituted into Eq. (4.32) to obtain 
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Xz[p,̂  + û Ĉt - t,̂ )] 

1 - p^ - u^(t - t^) 
(4.71) 

which when integrated yields 

£n 
z(t)" 

dn 
1 - P^ 

1 - Pk - "k̂ ^ - V 
-A(t - t^) (4.72) 

At t = t , Eq. (4.72) is solved for z ^ to obtain 
k-l-l' 

k-l-1 z exp In 
\ 

1 - P,, 

1 - Pk - "k^ 
-AT (4.73) 

If u = 0,then integration of Eq. (4.71) results in 

£n 
z(t)" Xp, 

(4.74) 

which for t = tĵ ^̂ ^ yields 

-k-H = z exp 

Ap^T 

1 - P,. 
(4.75) 

Similarly, p. ,, is obtained from Eq. (4.70) with t = t . Thus 

•'k-H \ ^ ̂ ^ (4.76) 

Equations (4.73) and (4.76) provide the finite difference solutions of 

the system equations at the sampling instants kT. These solutions are 

exact and do not involve any approximation of the derivative. If 

u = 0 Eq. (4.75) is used in place of Eq. (4.73). Tlie corresponding 
k ' 

finite difference measurement equation is 



"k " Y^rj- (4.77) 

These finite difference equations may he expressed in matrix notation 

as follows: 

2Sk+i - l ( 2 , , . V (4.78) 

and 

y^ = h(x^) (4.79) 

where 

81 = ZK exp 

82 - P k + " k T 

In 
1 - P. 

1 - pk - V 
- XT 

(4.80) 

(4.81) 

(4.82) 

and 

""'^^ - r ^ (4.83) 

4.8 Solution of the linearized equations with discrete-time input 

If the delta notation of variable deviation is omitted, Eq. (4.58) 

can be written 

X = Ax -̂  Du (4.84) 

When u = u, for t, <t<t, . , the Laplace transformation of 

Eq. (4.84) yields 

sX(s) - X, = AX(s) + D 
— —k — s 

(4.85) 

which is solved for X(s) as follows: 
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X(s) = [si - A]-l x^ + -1- [si - A] - ' DUj^ (4.86) 

The solution for 3c(t) is obtained from the inverse transformation of 

Eq. (4.86) as 

3c(t) = $(t - t|̂ )x̂  + "k •'•'•'̂  " •̂ "̂''•̂  (4.87) 

'k 

rt-t 
x(t) = 4.(t - t̂ )!c -H u " <KT)DdT (4.88) 

^' ' = 'k+1 

^+1 = *(T^^ + \ L *('̂ °<̂ ' (4.89) 

(4.90) 

[uation 

^ + 1 

(4 .89) can 

'- ^\ + 

be wr 

^ \ 

" -"o 

•I t ten 

where the control distribution matri 

G = *(T)DdT 

•'o 

As shown in Appendix A 

*(T)dT = A-'[$(T) - I] 

•'o 

therefore 

G = A-l[* - I]D 

(4.91) 

(4.92) 

(4.93) 



On applying the above procedure to Eq. (4.58), and using the A and D 

matrices of Eqs. (4.60) and (4.61) 

exp 
XTp* 
1 - p* 

z* t - -(r?^]l 
P*(l - P*) 

1 

(4.94) 

G = 

-z*T 
p*(l - p*) Ap*2 

T 

1 - exp 
' ATp* ]T 

(4.95) 

If the nominal values correspond to equilibrium conditions, 

z* = 1.0 and p* = 0, and Eqs. (4.94) and (4.95) reduce to 

'i AT" 

0 1 

'AT̂  

(4.96) 

2 

T 

Substituting Eqs. (4.96) and (4.97) into Eq. (4.90) results in the 

discrete system equation 

"AT2/2" 

(4.97) 

^-H 

1 AT 

0 1 
^ + (4.98) 

and the discrete output measurement equation obtained using Eq. (4.62) is 

ŷ  = [1 ^] \ (̂ -9') 

Equations (4.98) and (4.99) will be used in deriving the optimal closed 

loop control law for the regulator problem. 
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CHAPTER 5 

OPTIMAL CONTROL OF NUCLEAR SYSTEMS BY 
STATE VARIABLE FEEDBACK 

5.1 Introduction 

Regulation of neutron density in a reactor requires a feedback 

control law which will compensate for disturbances that occur infre

quently and randomly anywhere in time from zero to infinity. If atten

tion is focused on a single disturbance and system noise is neglected, a 

deterministic regulator problem is formulated. 

Dynamic programming is readily applied to linear discrete-time 

systems, and in the case of a quadratic performance index, leads to the 

direct calculation of the optimal linear feedback control law. If the 

performance index is to be minimized over a finite time interval, the 

feedback control law is a function of time; for an infinite time inter

val, the feedback control law is stationary and all state variables are 

fed back through fixed gains. Thus, discrete dynamic programming yields 

the solution to the reactor regulator problem, if the continuous system 

is sampled at discrete time intervals. 

For a general discussion of dynamic programming, see Bellman [93], 

Bellman and Kalaba [94], and Dreyfus [95]; and for the dynamic program

ming solution of discrete-time systems with a quadratic performance in

dex, see Tou [96, p. 45; 97, p. 345] and Lapidus and Luus [98, p. 155]. 

5.2 Dynamic programming solution of the linear regulator problem 

For the discrete-time linear system described by 



^ - 1 = *2k + <="k (5.1) 

and a quadratic performance index of the form 

N 
I 

k=I 
IN = ,1 ^^'K^^-i-i^ (5-2) 

T 

where x, is the transpose of jc^, Q is an n'n positive-definite or semi-

definite symmetrical matrix, and c is a positive constant, tne optimal 

control law which minimizes Ij., as shown in Appendix B, is given by 

"k - V k ^ ^'-'^ 

where 

G^[Q + Pj-iH 
B = - — ^ (5.4) 

-' G ' [ Q + Pj.^^lG + c 

and 

P = [* -H GB ]^(Q + P._,][* + GB ] + cB^B (5.5) 

In Eq. (5.3), the feedback matrix B , a row matrix, is obtained from 

N-K 

the iterative solution of Eqs. (5.4) and (5.5). The matrix P defined 

by Eq. (5.5) is n^n and symmetrical. Starting with P = 0, Eqs. (5.4) 

and (5.5) yield Bi, Pi, B2, P2 If the upper limit of summation 

in Eq. (5.2) is allowed to approach Infinity, then B. converges to a 

stationary matrix B and Eq. (5.3) reduces to "k = ^ ^ Bx, (5-6) 
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The product of the row matrix B and the state vector x^ yields the 

optimal feedback u^ as indicated in Eq. (5.6). 

5.3 Performance Indices and constraints 

Using Eq. (4.65), the general performance index given by Eq. (5.2) 

can be written In expanded form as a function of the delayed neutron 

deviation, reactivity, and reactivity rate: 

N 

I 
k=l 

I (Qii6z2 -̂  2Qi2fiz^p^ + Q22Pk + C"^-l> 

where 

6z, 1.0 

(5.7) 

(5.8) 

and 

Qii Q12' 
Q = 

_Qi2 Q22. 

To regulate the neutron density, a performance index which is a 

function of the neutron density deviation is defined by: 

(5.9) 

N 

k=l 

where 

1.0 *"k = \ 

Equation (4.99) written in expanded form yields 

* \ = *"k + Pk 

(5.10) 

(5.11) 

(5.12) 



Substitution of Eq. (5.12) into Eq. (5.10) gives 
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I (<5z2 + 26z + p2) 
k=l "̂  " 

(5.13) 

Comparison of Eq. (5.13) with Eq. (5.7) results in 

Q = 
1 1 

1 1 
(5.14) 

R = 0 (5.15) 

The Q matrix defined by Eq. (5.14) satisfies the performance index of 

Eq. (5.10). The optimal control law obtained using this matrix will 

minimize the sum of the squares of the neutron density deviations at 

sampling instants. 

To reduce the magnitude of the reactivity rate which is 

applied to correct a disturbance, a penalty term which weights ^_-^ 

can be added to Eq. (5.10). Similarly, reactivity can be returned to 

zero more quickly after a disturbance by adding a penalty term which 

weights p, . With these additional terms, Eq. (5.10) becomes 

I (6n2 + ap2 + c^_^) 
k-1 

where a and c are the weighting coefficients. If Eq. (5.12) is 

substituted into Eq. (5.16), the corresponding matrix 

1 

l-̂a 

(5.16) 

(5.17) 

will result in the minimization of the sum of the squares of the 

neutron density deviation and the reactivity at the sampling instants. 
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5.4 Reactor transient response and the performance index 

The optimal control law given by Eq. (5.6) is for a linear system 

as described by Eq. (5.1). Thus, in order to apply the method to the 

control of a nuclear reactor, the linearized discrete-time Eqs. (4.98) 

and (4.99) are used, and the 'i and G matrices are substituted into 

Eqs. (5.4) and (5.5) with A = 0.31 and T = 1. Arbitrary values are 

assigned to the a and c weighting coefficients of Eq. (5.16), and the 

Q matrix of Eq. (5.17) and the coefficient c are substituted into 

Eqs. (5.4) and (5.5). Equations (5.4) and (5.5) are solved iteratively 

with N̂ o" to obtain the stationary control law. The Calculation 

of Feedback Matrix computer program listed in Appendix G iteratively 

evaluates the B matrix until the difference between successive iter

ations diminishes to 10"^. Table 5.1 lists the B matrices calculated 

for nine combinations of a and c. 

TABLE 5.1 

FEEDBACK MATRIX COEFFICIENTS 

a 

0 

0 

0 

1 

1 

1 

10 

10 

10 

c 

0 

1 

10 

0 

1 

10 

0 

1 

10 

t l 

-0.8658008 

-0.5403229 

-0.2411739 

-0.6372618 

-0.4680735 

-0.2313746 

-0.2880492 

-0.2658030 

-0.1829017 

b2 

-1.1341991 

-0.7918012 

-0.4557331 

-1.0987756 

-0.8534584 

-0.5005205 

-1.0446476 

-0.9705480 

-0.6938182 
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The transient response of the reactor is calculated using the 

nonlinear system Eq. (4.78), the nonlinear measurement Eq. (4.79), and 

the linear feedback Eq. (5.6). The Calculation of Transient Response 

computer program listed in Appendix G solves these equations and plots 

are generated by the Plot Program for Transient Response computer 

program. Equation (4.81) is unsatisfactory for numerical evaluation 

with small values of u^; therefore, a series expansion for Eq. (4.81), 

derived in Appendix C, is used in the computer program. 

Although 1 sec was selected for the control law sampling interval, 

the system response is evaluated at intermediate sampling instants of 

0.1 sec to demonstrate that there is no inter sample ripple. 

Figure 5.1 shows the reactor transient response with an initial 

disturbance of p(0+) = O.I and performance index weighting coefficients 

a = 0 and c = 0. At t = (0-), the system is at equilibrium, which 

corresponds to p(O-) = 0, 6z(0-) = 0, and 6n(0-) = 0 . At t = (0+), a 

step change of reactivity occurs which gives rise to the prompt jump 

in neutron density. The control law minimizes the performance index 

given in Eq. (5.10) by driving the neutron density deviation to 

essentially zero in 1 sec. The control input at time zero is 

determined from the product of pg and b2 from Table 5.1 or 

UQ = -0.1134 $/sec (5.18) 

The initial control effort is proportional to the reactivity distur

bance and inversely proportional to the sampling interval. If the 

sample interval is doubled, the neutron density deviation is driven to 

zero in 2 sec and the initial control effort is halved. Similarly, if 

the sample Interval is halved, the initial control effort is doubled. 
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TIME, sec 

Fig . 5 . 1 . Transient response for a=0, c=0, Po=0.1, 6zo"=0. 
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Fig. 5 .2 . Trans ien t response for a -0 , c=0, Po=0.05, 6zo=0.05. 
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TIME, sec 

Fig. 5 . 3 . Transient response for a=0, c=0, po=-0.05, 4zo=-0.05. 
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Fig . 5 .4 . Trans ien t response for a=0, c= l , P3-O.I , 6zo-0. 



56 

0.1 

o 
If) 

.. 
3 

0 
or -
N 

00 

0.1 

I r — 

^ ^ ' ^ U 

• > 

1 1 

' S n 

• • • : : • • : : ; 

•rr-_J 

' 1 

1 • 

^ ^ ^ 8 z 

1 • 

1 

— 1 1 -

^ P 

1 1 

1 — 

' 

-

-

10 
TIME, sec 

Fig. 5 . 5 . Transient response for a=0, c=10, po=0.1 , i5zo=0. 
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Figures 5.2 and 5.3 describe system behavior for the same 

performance index as above, except the initial conditions are different. 

For Fig. 5.2: p(0-) = 0, 6z(0-) = 0.05, and 6n(0-) = 0.05; for 

Fig. 5.3: p(O-) = 0, «z(0-) = -0.05 and 5n(0-) = -0.05. These initial 

conditions correspond to a system which has not recovered from a prior 

disturbance and consequently is not at equilibrium at t = (0-). The 

disturbance for Fig. 5.2 is p(0+) = 0.05, and p(0+) = -0.05 for 

Fig. 5.3. In both cases, the neutron density deviation is driven to 

zero in 1 sec, and the reactivity and delayed neutron deviation 

asymptotically approach zero. 

Comparison of Figs. 5.1, 5.4, and 5.5 shows the effect of adding a 

control penalty term to the performance index with c = 0, c = 1, and 

c = 10, respectively. Here, the magnitude of the initial control 

effort is reduced at the expense of the neutron density deviation not 

being returned to zero in 1 sec. In Fig. 5.4, the neutron density 

returns to 1% in 2.6 sec and for Fig. 5.5 in 7.1 sec. 

The effect of adding a reactivity term to the performance index 

can be seen by comparing Figs. 5.1, 5.6, and 5.9, and Figs. 5.2 and 5.10. 

In Fig. 5.10, the area under the reactivity curve has been reduced at 

the expense of the neutron density deviation remaining off-normal for a 

longer period. 

Figure 5.7 shows the system behavior with uniform weight assigned 

to the neutron density deviation, reactivity, and control effort. 

Figure 12 shows the effect of reducing the weight assigned to the 

neutron density deviation. Comparison of Fig. 5.7 with Figs. 5.8 and 

5.11 shows the effect of increased weight on control effort and 

reactivity, respectively. 
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Implementation of the optimal control law given by Eq. (5.6) 

requires that the system state be known at each sampling instant. In 

a nuclear reactor, the delayed neutron precursor density and reactivity 

cannot be measured; consequently, they must be estimated from 

measurements of the neutron density. An optimal estimator which 

performs this function is derived in the following chapter. 
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CHAPTER 6 

ESTIMATION OF NUCLEAR SYSTEM STATE VARIABLES 

6.1 Introduction 

In 1806, Legendre [103] established estimation theory as a 

mathematical technique with the first publication on least-squares 

estimation. 

In 1960, Kalman [104] solved the Wiener problem for discrete-time 

systems using state-transition analysis and orthogonal projections, and 

presented the principle of duality which showed the relationship 

between stochastic estimation and deterministic control. In a paper 

on the general theory of control systems (105], he introduced the 

concepts of controllability and observability. At the joint automatic 

control conference, Kalman and Bucy [106] extended the method to 

continuous systems. In a fourth paper, Kalman [107] summarized the 

contributions of the earlier papers and added a number of theorems and 

examples. 

Ho [108] demonstrated the correspondence between the well-known 

method of least squares [109] and the optimal-filtering theory of 

Kalman. He showed that most of the results in linear filtering and 

prediction theory can be easily derived via a simple lemma on matrix 

inversion. 

Lee [110] in his chapter on optimal estimation discussed: the 

Wiener filter, the continuous and discrete Wiener-Kalman filter. 



least-squares estimation, maximum-likelihood estimation, and the 

Bayesian approach to estimation. 

Ohap and Stubberbud [111] developed a technique for estimating the 

state of a nonlinear system which combines Kalman's procedure with 

quasi-llnearization. Their technique is not optimal in the strict sense 

since the linearized dynamic equations are approximations to the non

linear equations. One advantage of the method is that unlike perturba

tion equations no a priori state of the system must be assumed. 

Cox (112] surveyed the methods available for resolving discrete-

time estimation problems: Bayesian and weighted least-squares 

estimation. Least-squares estimation was applied to nonlinear plant and 

measurement-vector-difference equations. A cost function was formulated 

which consisted of a linear combination of quadratic forms in errors of 

an a priori estimate, present observation, and plant noise. The con

straint due to the plant equation was included by using a Lagrange 

multiplier, and minimization of the cost function resulted in a pair of 

nonlinear equations. The latter were solved iteratively to obtain the 

optimal estimate. Linearized Kalman filtering was indicated as being 

equivalent to a single iteration. 

An alternate method of solving a cost function also was described. 

This method results in a two-point boundary value problem which is 

solved by successive approximations. M-step smoothing was introduced as 

a method to alleviate the difficulty of computer memory requirements 

Increasing linearly with the number of observations. It was pointed out 

that for systems with no plant noise, the linearized Kalman filter is 

asymptotically open loop because the filter gain approaches zero. 
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Mowery [113] presented an optimal filter solution for a plant 

described by a nonlinear-vector-differential equation and a nonlinear-

vector-measurement equation. The nonlinear plant equations were 

linearized about a nominal solution and a set of difference equations 

was obtained. The nonlinear measurement equation was similarly 

linearized. A criterion function was formulated which consisted of a 

linear combination of quadratic forms in errors of an a priori estimate 

and present observation. Minimizing the criterion function with respect 

to the new estimate resulted in a set of nonlinear normal equations. 

The solution of the linearized plant equation was used to derive the 

relationship between the a priori and a posteriori error weighting 

matrices. An iteration scheme was proposed to reduce the disparity 

between the nominal state vector and the true value. 

Deutsch [114] in a chapter on differential equation techniques 

for linear filtering and prediction included the Kalman-Bucy method, 

discrete-time estimation, nonstationary estimation, and Bayes'-

estimation formulation. 

Sridhar and Pearson [115] presented an approximate solution to the 

problem of digital sequential, least-squares estimation of states and 

parameters in nonlinear processes. Observations were assumed to be 

linear, and a cost function was formulated which consisted of the sum of 

a linear combination of quadratic forms in errors of the state vector 

estimates and observations. A Lagrange multiplier vector was used to 

add the plant constraint to the cost function. Minimization of the cost 

function resulted in a nonlinear two-point boundary value problem which 

was solved by invariant imbedding to obtain the filter equations. An 

example was presented for the solution of a system represented by a 
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nonlinear differential equation. Integration was used to obtain the 

solution of the nonlinear plant equation at discrete time intervals. 

Similarly, the plant variational equation was Integrated to obtain the 

value of the derivative of the plant nonlinear difference equation with 

respect to the state vector. 

Peschon, et al., [116, p. 70; 117, p. 6-8] derived an extended 

Kalman filter by linearizing the process and measurement nonlinear 

finite difference equations around the last estimate. 

Phillips [118] used least-squares theory to formulate a cost 

function for a discrete-time nonlinear plant and nonlinear measurement 

system. A Lagrange multiplier was used to include the plant equation 

constraint. The two-point boundary value problem which results from 

the minimization of the cost function was solved by invariant imbedding 

to obtain the filter equations. The resulting filter equations extend 

the earlier work of Sridhar and Pearson (115) by considering a nonlinear 

measurement equation. 
t 

Sorenson [119] investigated optimal estimation and control policies 

for discrete-time, stochastic, dynamic systems. Perturbation tech

niques were applied, terms higher than first order were retained, and 

the estimation and control policies were determined using the Bayesian 

approach. In Reference 120 he summarized Kalman filtering techniques. 

A system consisting of a nonlinear plant and nonlinear measurement equa

tion was analyzed by using linear perturbation equations with the 

coefficients evaluated at nominal values. 

Sage and Masters (121] showed the relationship between least-

squares-curve fitting and optimum filtering for linear systems. The 

Kalman-Bucy solution to the Wiener filtering problem was presented using 



70 

least-squares techniques and the Bayesian rule. Relationships between 

least-squares, minimum-variance, and minimum-mean-squared-error 

estimates also were described. 

Irwin (122] investigated estimation for discrete-time systems. The 

Bayesian, maximum likelihood, conditional expectation, dynamic pro

gramming, orthogonal projection, and two-point boundary value problem 

approaches were used to derive the Kalman filter equations. The solu

tions for nonlinear systems consisted of: the Kalman filter linearized 

about the present estimate; iterative solution of the equations 

resulting from the dynamic programming approach; and the two-point 

boundary value problem approach. A new approach was presented for the 

nonlinear estimator which utilized a performance index consisting of 

the logarithm of the conditional probability of the present estimate 

based on a set of measurements. Minimization of the performance index 

resulted in a set of nonlinear algebraic equations whose solution yields 

the optimal estimate. 

Pearson [123] extended the the work of Sridhar and Pearson [115] to 

include nonlinear measurements. His result was the same as that of 

Phillips [118]. 

Liebeldt [124] included a chapter on linear discrete dynamic esti

mation and derived the Kalman filter. 

Sage [125] devoted chapters to optimum state estimation in linear 

stationary systems, optimum filtering for nonstationary continuous 

systems, and least-squares curve fitting and state estimation in 

discrete linear systems. 

Of the estimation methods outlined above, the iterative procedure 

presented by Cox comes closest to providing the solution for the 
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deterministic nuclear system state estimator. The filter gain for a 

deterministic system with the fastest observation scheme is different 

from the filter gain derived for a stochastic system, so a sequential 

development of a nuclear system state estimator is presented starting 

with discrete-time equations and a linear Kalman estimator. Although 

the estimator derivation is based on discrete-time difference equations, 

integration is introduced into the estimator to make the method directly 

applicable to a plant described by a nonlinear vector differential 

equation and nonlinear measurement equation. 

6.2 Kalman filter 

(6.1) 

For the discrete-time linear system described by 

^ + 1 " * ^ 

and 

k̂ = %. <'•'> 

the fastest observation scheme is uniquely d«termined by 

4+1 = *4 + i ' ( y k - V ^'-'^ 

wh ere x, is the estimate of the system state at instant k; ̂ i is the 

* * 
first element of the dual basis of f̂i f , where 

f* = (*T)-iHT (6-4) 

and 

If the dual basis of F is 

F* = [ft 4] (^•^> 
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then 

*T -1 
F = (F ̂ ) ' (6.7) 

F = [f.1, ..., f̂ ] 

For the discrete-time linear reactor Eqs. (4.98) and (4.99), 

1 

1 - AT 

(6.8) 

* 
i l = 

* 
l2 = 

1 

_AT 

"l 

AT 

0 

1 

o" 

2 

- 1 

- 2 

1 

_1_ 

Y 

1 

and 

l.\ 

- 2AT 

1 1 ~ 

1 - AT 1 - 2AT_̂  

•(2AT - 1) /AT 1 - l /AT 

1/AT l /AT 

'(2AT - 1)/AT 

l/AT 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

Thus the estimator described by Eq. (6.3) with the f̂i of Eq. (6.13) 

will generate an optimal estimate of the system state, after a distur

bance, using a maximum of two output measurements. In general, for an 

nth-order system, the optimal estimate is obtained using a maximum of 

n output measurements. 

As shown in Figs. 5.1 through 5.12, the reactivity and delayed 

* 
neutron deviation do not correspond to the nominal values of z =1.0 
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and p* = 0 which were assumed in deriving Eqs. (4.98) and (4.99); 

therefore, it would be better to use Eqs. (4.62) and (4.94) to evaluate 

the H and i matrices, except the nominal values must be known. The 

extended Kalman filter method uses the last estimate as the nominal 

value, which is satisfactory if successive values do not change rapidly. 

As will be shown later, there is a very large change in nominal values 

after a reactivity disturbance; thus the extended Kalman filter fails 

to provide the correct estimates of the reactor state. The question of 

unknown nominal values is resolved by using the iteration method 

proposed by Cox [112]. 

6.3 Linear estimation by matrix inversion 

For the dynamic system described by 

x^^^ = 4.(k -h 1, k)x^ (6.14) 

and 

y^ - H ^ (6-15) 

assume k output measurements have been made which are related as 

follows: 

Yl = "liil 

y2 = H^x? 

^k = " k ^ 

These measurements can be referred to Xĵ ^ by using Eq. (6.14) with 

2ii = 4i(J>k)2Si,> 3"<1 written in composite form. Thus 

(6.16) 
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Hi$(l,k)xj^ 

H2 4.(2,k)x̂ ^ 

\*(k,k)xj^ 

(6.17) 

Equation (6.17) can be partitioned to yield 

yi 

y2 

Hi*( l ,k ) 

H2<I>(2,k) 

Hj^*(k,k) 

(6.18) 

and written more compactly as 

(6.19) 

where y_^ is the vector of output measurements, and K is the composite 

matrix shown in Eq. (6.18). 

The fastest observation scheme is obtained when the number of 

output measurements is equal to the order of the system. With k = n, 

T 
Eq. (6.19) can be solved for x by left-multiplying by 11 , 

and by [H H ] ~ ^ , to finally obtain 
~k k 

Xk = [H^^r'H^yk (6.21) 

which gives the optimal estimate of the state at instant k for a set of 

k measurements. 
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A sequential form for estimation can be obtained by writing 

Eq. (6.18) as follows: 

ik-1 « k - A - i 
(6.22) 

where y, , is a vector of k-1 output measurements, and H is a 
•Hc-1 —k-I 

composite matrix defined by the first k-1 elements in Eq. (6.18). The 

vector X can be written in terms of x, . With simplified notation 
-k-1 -k 

x^_^ = *-l (k,k-I)x^ = *-l^Xfc 

and substitution of Eq. (6.23) into (6.22) yields 

(6.23) 

^-1 Vl*k-1 

\ 
^ 

(6.24) 

Solution of Eq. (6.24) for x, is obtained by multiplication by the 

Inverse matrix : 

»k-l*k-l 

\ 

^-1 

yu 

(6.25) 

and comparison with Eq. (6.21) shows that 

\-l\-l' 

\ 

-T ..T T „T I „T, 
[ C i ^ . A - i \ i i - W ' ^ t * k - A - i ! V 

(6.26) 

where (*rli) • *k-i" Therefore 

file:///-l/-l'
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\ = f*k-iiA-i*kii + KV ^CA-A-I ^ Vki (6-") 

Equation (6.27) can be written in terms of x^_ by substituting for 

iĵ _ĵ  from Eq. (6.22) to obtain 

^k = t \- i i^-A-i*k-i ^ «X]-^ [*k-iS^-A-A-i ^ ^y^^ (̂ •2«> 

Equation (6.28) can be rearranged into a form containing an error 

correction term by multiplying both sides of the equation with the 

result that 

[*k- i«^-A-i*k- i + »k \ ] ^k = \ - i ^ k - A - A - i ^ » k <6-25) 

T 
If the term H^H^t 2Su i 1̂  added and subtracted to the right hand side, 

Eq. (6.29) can be written as follows: 

t \ - i d 4 - i * k - i + «k\i^k = * k - i » ^ - A - i * k - i \ - A - i 

T T 
LH, *, ,x, , - H, H, $, ,x, , \i k k-1—k-1 k k k-l-Hc-1 

+ Ĥ ŷ . (6.30) 

Multiplication of both sides of Eq. (6.30) finally yields 

^ = * k - A - i + [*k-i£k-A-i*k-i + »k«k]"'«l^[yk - \ * k - A - i ^ 

(6.31) 

which is in the form of Kalman's Eq. (6.3), except that x, is generated 

with the y^ output sample. This is the filtering equation. 
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If 4-1 "̂"̂  4 ^^^ defined as the optimal filter outputs, then an 

optimal estimate is predicted by using the transition matrix to yield 

^ = \-l4-l (6-32) 

where x, is the predicted value of x, obtained using the y 
K —K k—1 

measurement. Equation (6.32) is the prediction equation. 

If in Eq. (6.31), x^ and x^ are replaced by ̂  .. and i^, 

respectively, and Eq. (6.32) is used, then Eq. (6.31) becomes 

4 = ik + t\-i^k-i4-i*kli + »k»ki"' "k'^k - »k^i («•"> 

The system state at t = (k -t- 1)T is predicted from 

4+1 = *A (^-3*) 

If both sides of Eq. (6.33) are multiplied by i and Eq. (6.34) is 

substituted for the left side 

ikfi - *k4 * \ [ 4 - i i i 4 - i * ; i i ^ »k«i»]"' "k'̂ k - "k4i ^'-^'^ 

which i s Kalman's formula with 

i ' - 4[4-iiik-i4-i*kli ^ <«ki-' «k ^'-''^ 

Equation (6.33) yields the optimal estimate of the system at 

Instant k using an a priori estimate x^ and an error correction term 

based on measurement y . *^ is the a posteriori estimate. A new 

a priori estimate is generated using Eq. (6.34). 

Equation (6.35) generates a new a priori estimate from the old 

a priori estimate with an error correction term based on the current 

measurement. 

file:///-l4-l
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6.4 Linear estimation by least-squares minimization 

The least-squares estimate of x^ is obtained by minimizing the 

following cost function: 

J = (Yl - Hixi)2 + (y2 - H22C2)2 -I- ... + (y^ - H^x^)^ (6.37) 

subject to 

2k = *k-A-i 

Equation (6.37) can be written using Eq. (6.22) as follows: 

J = [ik_i - 4 - A - i i ^ t ^ - i - 4 - A - i ] + (̂ k - «k^) ' 

(6.38) 

(6.39) 

The constraint defined by Eq. (6.38) can be included by defining a 

vector Lagrangian multiplier A and augmenting Eq. (6.39). The new cost 

function is 

Setting the gradient of J with respect to x, ., 3c , and A, respectively 

equal to zero yields 

3 T T T 

I J— = -2[yk-i - 4 - A - i ' \ - i - ^ V i = ° (6-^^) 

and 

3 T T T 

^--^K-\\^\ + ' -° (6.42) 

and 

3 J T 

3A = f^ " VA-ll = ° (6-43) 
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Equation (6.43) is the original system Eq. (6.38). Equation (6.42) is 

T 
solved for A to obtain 

^^ = -2[yk - \ \ ^ \ (6.44) 

T 
and A is eliminated from Eq. (6.41) with the result that 

HJ^.A-I - ^-ih-i\-i = ̂ k-X^k - *k-X»k^ (6-«) 

-T which on multiplication by * yields 
k-1 

\-i^!^-A-i - \-i»i^-i4-A-i = »i[\ - < 4 ^ (6-**) 

If x,_. is replaced by using Eq. (6.38), then Eq. (6.46) can be 

written 

\ - i 4 - A - i - \ - i 4 - i 4 - i \ i A = "k^k - "k«k^ (6.47) 

which, in turn, can be rearranged in the form of Eq. (6.27) by using 

the matrix inverse. 

An alternate cost function can be defined [112. 113, 122]: 

J - [H„(Xk.i - £)l^ + (y^ - \-^->' + ^"[-k - V A - i ^ ^'-''^ 

where â  is the previous estimate. Setting the gradients of J with 

respect to x^_, and jc , respectively equal to zero yields 

3J _ ,,„ . x,T.. ,T. „ (J ̂ 9) 
3 ^ = 2 ( 4 ( X j ^ _ ^ - a ) ] H , - A ,^_^ ^ 0 

1^ 2[y,. -H,jc..]X + X^ = 0 (6.50) 

and elimination of A results In 

file:///-i4-A-i
file:///-i4-i4-i/iA
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[«„(2^-i - « ) ] \ = [y^ - \ 2 ^ ] V k - i < -̂̂ ^> 

Transposing Eq. (6.51) and multiplying by *"' leads to 

* k i l H ^ . l - *i;iiHX^ = H^y, - ^y^ (6.52) 

Equation (6.38) is used to eliminate x, , with the result that 

*k!iHX*k-A - *k-iiiX^ = «^\ - "iw ^'-"^ 

Equation (6.53) can be rearranged in the form of Eq. (6.29) which is 

obtained by the matrix Inverse. 

6.5 Nonlinear estimation by least-squares minimization and iteration 

For the nonlinear plant defined by 

2Sk = KiSk-i) (6-54) 

and the nonlinear measurement equation 

Yk = (̂̂ Efc) (6.55) 

an optimal estimate of the system state can be obtained by minimizing 

the following cost function: 

J = tile.(2̂ -1 - 2)]^ + [y^ - h(x^)]2 + A^[x^ - Hx^_^)] (6.56) 

where <i is the previous estimate. Setting the gradients of J with 

respect to x^_^ and x̂ ,̂ respectively equal to zero yields 

9 J T T 
1 ^ = 2[4(x„_i - a)] H^ - x\_^ = 0 (6.57) 

and 

3 J T T 
— = -2[y^- h(x^^)] H^ + x = 0 (6.58) 
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where 

V l = — (6-59) 

and 

3h(2c) 

«k ' 1 ^ (6-60) 

T 
Eliminating A from Eqs. (6.57) and (6.58) results in 

[H,(x„.i - £ ) ] \ = [Yk - h(Xk)lVk-l (6-61) 

and after transposing, Eq. (6.61) becomes 

^(-^., --) ' i.A^y^ - ^u^n (6.62) 

Equations (6.54) and (6.62) must be satisfied for J to be a minimum. 

The estimation process may be interpreted as follows. Given the 

last estimate a^ based on a measurement y . , a revised estimate x̂ _i is 

made which must satisfy 

% 
H (2C, , - a) = 0 (6.63) 
—a -Ht-1 — 

This revised estimate is used in Eq. (6.54) to obtain an estimate of 

X, , which, in turn, must satisfy 

y^ - h(x̂ )̂ = 0 (6.64) 

Nonlinear Eqs. (6.54) and (6.62) can be solved by iteration by 

using a first-order Taylor expansion: 

i-H _ ,,..1+1, ^ , i , .„ , i+1 1 , (6.65) 
\ = K^.^) = i(Xk_i) + Vl (Vl - Vi^ 

h(x^"'^ . h(x̂ )̂ + Hĵ  (x̂ ""̂  - x^) i+l^ V,.. N , „ ,..i+l ix (6.66) 
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where the superscripts identify the iteration sequence. Equation (6.62) 

at the 1+1 iteration is 

and substitution of Eqs. (6.65) and (6.66) into Eq. (6.67) results in 

- »kVA-i ̂  Vk-A-ll = 0 (6.68) 

T i 
The term H H x, , is added and subtracted to Eq. (6.68) to obtain 

—a—DT-k-l 

T T T "i+l T T T i 

[ 4 4 + VA4Vi]3Sk-i = [«««, + V i 4 4 V i i 2 k - i 

+ H''̂ H (O - X,̂  ,) (6.69) 
—a—a — --k-1 

Multiplication of Eq. (6.69) by the inverse matrix yields 

+ \ (x^-KVi))] +H^(a- Vl)} (6.70) 

and the i+1 estimate for x, is obtained from 

^^^ = KVi^ + Vi(vi - 4-i) (6-71) 

Equations (6.70) and (6.71) are the estimator equations for a system 

consisting of a nonlinear plant with a nonlinear measurement. The 

iteration sequence is started by selecting 

„1 
-1 - (6.72) 



and 

x^ = 1(a) (6.73) 

With each Iteration, the H^ and F _ matrices are re-evaluated 

and a new matrix inverse is calculated. A matrix inversion lemma 

applied to stochastic systems to eliminate the inversion is not appli

cable to Eq. (6.70) (125, p. 276]. 

The term H (cî  - >Sĵ _i) which appears on the right hand side of 

Eq. (6.70) is identically equal to zero throughout the iteration 

sequence. A proof that 

H (a - xj*- ,) = 0 (6.74) 

is given in Appendix D. 

6.6 Nonlinear estimation of continuous systems with discrete time 

measurements 

The nonlinear estimator defined by Eqs. (6.70) and (6.71) was 

derived for a system described by nonlinear dj.fference Eqs. (6.54) and 

(6.55). 

For a plant described by 

X = £(x) (6.75) 

the value of x, is obtained by Integration: 

^=1(2^.1)=Vl * r £(̂ )<̂ ^ ^'•'"^ 
•'o 

The estimator requires 3i.(x, _, )/3x̂ _, which is obtained by 

integrating the solution of the plant variational equation. The 

variational equation is given by 

6x = G6x (6-") 
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where 

3g 
G = — (6.78) 

Equation (6.77) is a linear equation and has the solution 

&x^ = *(T)6Xk_j^ (6.79) 

where the state-transition matrix * satisfies the matrix differential 

equation 

*(t) = Git>(t) (6.80) 

with *(0) = I. As Indicated by Eq. (6.79), the transition matrix of the 

linearized system measures the change in x, per unit change in i^.^i 

therefore 

^ - = F((k-1)T) = GFdt (6.81) 
—k-1 •'0 

with F(0) = I. Thus simultaneous integration of Eqs. (6.75) and (6.81) 

provides the information required by the estimator, and the analytic 

solution of the nonlinear plant differential equation is not required. 

An analytic comparison of Eq. (6.81) for the reactor equations is 

presented in Appendix E. 

6.7 Performance of nuclear system state estimator 

For the nuclear system nonlinear discrete-time Eqs. (4.75), (4.76) 

and (4.83), the performance index is defined: 

^ = '\-l " ̂ (^-1^1^ "̂  ^\ - h(Xk)]^ (6.82) 

subject to 

\ " Vl^''Pf^Vl'^^(^ " Vl^l (6-83) 
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\ = Pk-i (6.84) 

The performance Index is a minimum when 

Vk-i = h(x^_^) = z^_^/(l - p^_^) (6.85) 

\ ' ''(̂ ^ " \^(^ ' \^ (6-86) 

Using Eqs. (6.83), (6.84), (6.85), and (6.86) and two successive output 

samples, the solution for reactivity is 

^"(Yk/Vl^ 
^k-1 ''k AT + <in(yk/yk-i) 

and for the delayed neutron precursor density 

4-1 - (̂  - Vl^^k-I (6-88) 

The solution for z, is obtained from Eq. (6.83) using Eqs. (6.87) and 

(6.88). Numerical values for the analytic solution of the estimator 

equations are obtained by using the Analytic Estimator Solutions compu

ter program listed in Appendix G. The programmed value of YQ is unity, 

and Yl is calculated in response to a step change in reactivity 

occurring at t = (0+). Table 6.1 lists the analytic estimator solutions 

for different values of reactivity disturbances. These values are used 

to determine whether the estimator with iteration, programmed to solve 

Eqs. (6.70) and (6.71), generates the correct estimate in one sample 

after a disturbance. 

The Finite Difference System with Estimator and Control computer 

program (listed in Appendix G ) , with the control loop opened by setting 

u = 0, generates samples of the output measurement by solving the plant 

finite difference Eqs. (6.83) and (6.84), the measurement Eq. (4.77), 
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P(0+) 

TABLE 6.1 

ANALYTIC ESTIMATOR SOLUTIONS 

Pi 

0 

0 

0 

-0 

-0 

-0 

25 

20 

10 

10 

20 

25 

0.55778428 

0.49233880 

0.31081242 

-0.66212729 

-3.0783149 

-11.471604 

0.65380766 

0.68571204 

0.79259985 

1.4690358 

3.2274608 

9.3774779 

1.4784811 

1.3507277 

1.1500494 

0.88382870 

0.79137116 

0.75190634 

and the estimator Eqs. (6.70) and (6.71). Consecutive iterations of 

the estimator equations are performed until the performance index is 

equal to or less than a specified value, which can be expressed as 

J < El (6.89) 

Thus by changing ei, the accuracy and number of iterations can be 

controlled. 

The matrices F . and H, are obtained by differentiating 

Eqs. (6.83), (6.84), and (6.86), respectively, to obtain 

k-1 

exp 

ATr 
k-1 

H^ = [1/(1 

^k-1 

\^ 

ATz 
k-1 

ATp 

(l-Pk-i^^^'ll-P 
k-1 

k-1 

z,/(l - P,)2] 

(6.90) 

(6.91) 
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A worst-case analysis is used to investigate the performance of the 

estimator. Since a disturbance can occur anywhere within one sample 

interval, the worst case is when it occurs immediately after the 

measurement. The estimator is Initialized by assuming the system to be 

in equilibrium up to t = 0. Thus 

x̂O = x(O-) = (6.92) 

H„ = [I 1] (6.93) 

and 

x(0+) .P(0+)J (6.94) 

For large reactivity disturbances, the first iteration produces an 

estimate of P^ •• which exceeds unity. If this happens, a discontinuity 

is crossed and the estimator is not able to converge. The computer pro

gram contains an arbitrary hard limit on p, . of 0.8. With this limit, 

the estimator produces correct estimates for step changes in reactivity 

up to +0.56$. Similarly, a discontinuity exists at -0.27$. Thus the 

useable range of the estimator for step disturbances is from -0.27$ to 

-H5.6$. 

Tables 6.2 and 6.3 show, respectively, estimator performance 

for p, , z, , and n in response to step reactivity disturbances of +0.1$ 

and -0.1$ with an iteration accuracy of ei = 10""*. The number of 

iterations is indicated in column I, and the estimated values are given 

beneath the true values. For P = O-l. the estimate is generated in four 

iterations and agrees up to the fifth decimal place with the values In 

Table 6.1. At the end of the second sample interval, the system state 
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TABLE 6.2 

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS, 
El = 10-'', AND p(0+) = 0.1 

10 

.10000000 

.0000000 0* 

,10000000 
.31082521* 

.10000000 

.09907935* 

.lUOOOUOO 

.0V999066* 

. 1 0 0 0 0 0 0 0 
, 0 S i 9 9 9 9 0 5 * 

.10000000 

.04999996* 

.10000000 

.09999996* 

.10000000 

.04999996* 

,10000000 
.09999999* 

.10000000 

.04999993* 

.10000000 

.04999998* 

1,00000005 
1. n 0 0 0 0 0 0 5* 

1.03501154 
.79259022* 

1.07131714 

1,07241802* 

1,10886090 
1.10867280* 

1.14772035 
1,14772153* 

1.18794163 
1,18794169* 

1.22957243 
1.22957249* 

1,27266217 
1.27266222* 

1,31726195 
1.31726200* 

1.36342472 
1.36342481* 

1.41120523 
1.41120525* 

1.11111114 
1,0000000 5* 

1,15004947 
1.15005689* 

1.19035235 
1.19035855* 

1.23206765 
1.23206808* 

1.27524482 
1.27524482* 

1,31993512 
1.31993512* 

1.36619157 
1.36619157* 

1,41406904 
1.41'.0690 4* 

1,46362438 
1,46362439* 

1.51491633 
1,51491633* 

1,56600579 
1.56800579* 

Estimate 
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TABLE 6 . 3 

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS, 
£l = lO""*, AND p ( 0 + ) = - 0 . 1 

\ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

* 
Estimate 

-.10000000 
.0000000 0* 

-.10000000 
-.66060630* 

-.10000000 
-.09012711* 

-.10000000 
-.10006901* 

-.lUOOOUOO 
- .10009105* 

-.10000000 
-.09999991* 

-.10000000 
-.09999999* 

-.10000000 
-. 04999995* 

-.10000000 
-.04999991* 

-.lOOOOUOO 
-.0V999999* 

- .10000000 
- . 04999995* 

1.00000005 
1.0000000 5* 

.97221162 
1.46791B7 7* 

.94519543 

.93673362* 

.91892997 

.91900903* 

.89339439 

.89346834* 

. B6856840 

.fl6656834* 

,B4443229 
.«44<t322 5* 

.P2096686 

.82096683* 

.79815353 

.79815349* 

.77597413 

.77597411* 

.75441106 

.7544110 3* 

.90909093 
1.00000005* 

.88382875 

.88396555* 3 

.85926857 

.85928843* 4 

.83539089 
,83541036* 1 

.81217672 

.81217672* 1 

,78960765 
.78960766* 1 

.76766572 

.76766571* 1 

.74633353 

.74633353* 1 

.72559412 

.72559413* 1 

.70543103 

.70543101* 1 

.68582824 

.68582824* 1 
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TABLE 6.4 

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS, 
El = 10-6, ^ D p(o+) =0.25 

G 

1 

2 

3 

4 

5 

6 

7 

6 

9 

ID 

* 
Estimate 

.25000001 

.0000000 0* 

.25000001 

.55778435* 

.25000001 

.24997180* 

.25000001 

.24999622* 

.25000001 

.25000005* 

.25000001 

.25000 005* 

.25000001 

.25000003* 

.25000001 

.25000003* 

.25000001 

.2500 0001* 

.25000001 

.25000y0 4* 

.25000001 

.25000 002* 

1.P0000005 
1.00000005* 

1.10886100 
.65380763* 

1.22957266 
1.22962016* 

1,36342509 
1.36342834* 

1.51184884 
1.5118487 9* 

l.i^7643U14 
1,A7643008* 

1,R5892791 
1.85892769* 

2.n61292ftO 
2.06129257* 

2.28566686 
2.28568683* 

2,53450889 
2,53450883* 

2.fll04l793 
2,81041790* 

1.33333338 
1.00000005* 

1.47848131 
1.47848132* 

1.63943018 
1.63943187* 

1,81790011 
1.81790009* 

2.01579849 
2.01579849* 

2.23524020 
2.23524020* 

2.47857056 
2,47857056* 

2.74839009 
2,74639009* 

3.04758244 
3.04758241* 

3.37934517 

3.37934520* 

3.74722387 
3.74722384* 

6 



TABLE 6.5 

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS, 
El - 10-6, ^ p p(o+) = -0.25 

91 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

* 
Estimate 

-.25000001 
.0000000 0* 

-.25000001 
-11.47042594* 

-.25000001 
-.24271586* 

-.25000001 
-.24998595* 

-,25000001 
-,25004289* 

-.25000001 
-.24999987* 

-.25000001 
-.25000008* 

-.25000001 
-.24999993* 

-.25000001 
-.24999997* 

-.25000001 
-.24999992* 

-.25000001 
-.24999997* 

1.000000 0 5 
1.00000005* 

.93968293 
9.37661416* 

.88337989 

.87823433* 

.83027365 

.83027136* 

.78036003 
,78038681* 

,73344706 
,73344699* . 

,68935435 
,68935439* 

,64791237 
,64791234* 

,60896177 
,60896174* 

,57235275 
,57235272* 

,53794457 

.53794455* 

,80000001 
1,0000000 5* 

.75190635 

.75190811* 7 

.70670392 
,70670567* 7 

.66421894 

.66422455* 1 

.62428603 

.62428803* 1 

.58675765 
,58675765* 1 

,55146348 
,55148349* 1 

.51832990 

.51832991* 1 

.48716940 
,48716940* 1 

.45788219 

.45788220* 1 

.43035565 

.43039564* 1 
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TABLE 6.6 

ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS, 
El = lO-"*, £2 = 10"^. AND p(0+) - 0.1 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

* 
Estimate 

Pk 

•lonooooo 
•oonooooo* 

•lonooooo 
•31416966* 

•lonouooo 
•09946450* 

•lunoouoo 
.10 033641* 

.lonouooo 

.10034495* 

.lonouooo 

.10034578* 

.lonooooo 

.10034587* 

.lunouooo 
•1003457 9* 

.10000000 
•10034589* 

•lonooooo 
•100345 79* 

•lonooooo 
•10034587* 

\ 

1.00000005 
1.00000005* 

1.03504454 

.78872010* 

1.07131714 

1.07196009* 

1.10886090 
1.10844578* 

1.14772035 
1.14728047* 

1.18794163 
1.18748521* 

1.22957243 
1.22909y93* 

1.27266217 
1.27217317* 

1,31726195 
1,31*75571* 

1,36342472 
1,36290086* 

1.41120523 
1.41066292* 

°k 

1,11111114 
1,0000000 5* 

1,15004947 
l,150055o9* 

1,19035235 
1,19035851* 

1.23206765 
1.232068U6* 

1.27524482 
1.27524485* 

1,31993512 
1,31993510* 

1,36619157 
1,36619160* 

1,41406904 
1,41406901* 

1,46362438 
1,46362441* 

1,51491633 
1.51491632* 

1.56800579 
1,56800580* 

1 

1 

1 

1 

1 

1 

1. 

1. 

1. 

1. 

At 

,00000 

,00000 

00000 

00000 

00000 

00000 

00000 

00000 

00000 

00000 

I 

4 

3 
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ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS, 
10" £2 - 10"3, AND p(0+) = 0.1 

At 

10 

lonooooo 
oonooooo* 

lonouooo 
31165936* 

lonooooo 
09925489* 

lonouooo 
10016345* 

lonouooo 
luni/159* 

lonouooo 
lOni /?48* 

lonouooo 
ijni/259* 

lonouooo 
l o n i / 2 5 1 * 

lonouooo 
lOni/267* 

lunouooo 
i o n i / 2 6 4 * 

lonooooo 
l o n i / 2 5 9 * 

1.00000005 
1.00000005* 

1.03504454 
.79163070* 

1.07131714 
1.07220364* 

1.10886090 
1.10865993* 

1.14772035 
1.1475015 6* 

1.18794163 
1.18771397* 

1.22957243 
1.22933465* 

1.27266217 
1.27241919* 

1.31726195 
1.3170092 4* 

1.36342472 
1.36316331* 

1.41120523 

1.41093461* 

1.11111114 
1.00000005* 

1.15004947 
1.15005660* 

1.190352.i5 
1.19U35R4b* 

1.23206765 
1.23206809* 

1,27524482 
1,27524486* 

1.31993512 
1,3^993513* 

1,36619157 

1,36619160* 

1,41406904 

1,41406901* 

1,46362438 
1.46362439* 

1,51491633 
1,51491630* 

1,56800579 
1,56800562* 

,25000 

,50000 

,50000 

,50000 

,50000 

.50000 

,50000 

.50000 

,50000 

,50000 

Estimate 
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Is estimated to within 0.1%, requiring three iterations. Thereafter, a 

single iteration is used to track the system. The estimation sequence 

after k = 2, corresponds to an extended Kalman filter in which the 

previous estimate is used to evaluate the F and H matrices. 

Tables 6.4 and 6.5 show, respectively, the estimator performance 

In response to reactivity disturbances of +0.25$ and -0.25$ with an 

iteration accuracy of E, = lO'^. The increase in iteration accuracy is 

required to obtain a good estimate for ^2_- ^°^ ^1 " 10~^> P2 " 

-0.15607480; and for E^ = IQ-"*, p = 0.08458834. For EJ = 10""*, p^ = 

-0.25450338 and one additional sample is required to obtain an accurate 

estimate of the system state. As indicated in Table 6.5, seven itera

tions are required for x̂  and K , and one iteration is used thereafter. 

The estimates in Tables 6.2 to 6.5 are for a system described by 

finite-difference equations. The performance of an estimator which uses 

integration of the system equations is investigated by using the 

Differential System With Estimator and Control computer program (listed 

in Appendix G) with the feedback control loop opened by setting u = 0. 

The plant differential equations are given by Eqs. (4.32) and (4.33); 

and the variational equation used to calculate F is given by 

Eq. (4.60). The matrix differential equation to be integrated is 

F u F12 

F21 F22 

Xp(t)/[l-p(t)] z(t)/[l-p(t)]2 

0 0 

Fll F12 

F21 F22 
(6.95) 

and after multiplication yields 

• _ Ap(t) ., Az(t) „ 
'̂ ll - l-p(t) ^11 + [l-p(t)]2 ^21 (6.96) 
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and 

^21 = F22 = 0 (6.98) 

Solution of Eq. (6.98) requires that F21 = constant and F22 = constant, 

but the initial conditions require F(0) = I. Therefore, F21 = 0 and 

F22 " 1. After substitution of F21 and F22, Eqs. (6.96) and (6.97) 

reduce to 

Xp(t) 
I-P(t) FH=T^^. Fll (6-99) 

• Xp(t) Az(t) ,, ,̂ n̂  
•̂ '2 = i r ^ ) F12 + [i-p\t)]2 (̂ -100) 

The Initial conditions are: Fii(O) = 1 and Fi2(0) = 0. 

Simultaneous integration of Eqs. (4.32), (4.33), (6.99), and (6.100) 

yield the solutions for x, and F . 

The integration is performed numerically, therefore the accuracy 

of integration is dependent upon the step size. The Kutta-Merson 

method [126; 127, p. 24] given in Appendix F is used because of its one-

step starting feature and error computation. The integration step size 

it is automatically adjusted to meet a specified accuracy requirement. 

The parameter £2 In the computer program, specifies the integration 

accuracy. 

Tables 6.6 and 6.7 show, respectively, the estimator performance 

for a step change in reactivity of 0.1 with Integration accuracies £2 °^ 

10~2 and IQ-^ and an iteration accuracy £1 of lO""*. Comparison of 

Table 6.6 with Table 6.1 shows U accuracy of x^ and 0.5% accuracy for 

Xj. For 113 and subsequent estimates, a steady error of approximately 
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0.34% is obtained for p. The integration step size it, automatically 

selected by the integration subroutine, is shown to be 1 sec for each 

sample interval with the number of iterations remaining the same as in 

Table 6.2. Table 6.7 shows 0.3% accuracy for jCi with it = 0.25, and 

0.74% accuracy for x^ with At = 0.5. For X3 and subsequent estimates, 

the steady error is 0.17% and At = 0.5. When At = 0.25, the equations 

of the integration subroutine are solved four times for each iteration, 

or 16 times for four iterations. 
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CHAPTER 7 

COMBINED ESTIMATION AND CONTROL OF NUCLEAR SYSTEMS 

7.1 Introduction 

The problem of combined estimation and control has been 

investigated elsewhere [96, 97, 110, 125 and 128] with a resulting 

separation theorem. This theorem states that for linear systems subject 

to Gaussian noise with a quadratic cost function, the optimum stochastic 

controller is realized by cascading an optimal estimator with a deter

ministic optimum controller. The separation theorem does not apply to 

nonlinear systems with optimality guaranteed. 

In Chapter 5, optimal control of a nuclear reactor was investigated 

using a control law which is a linear function of the state variables. 

The state variables: reactivity and delayed»neutron precursor density, 

are not measureable. Therefore, in Chapter 6, an investigation was made 

of an optimal estimator which generates estimates of reactivity and 

delayed neutron precursor density from measurements of the prompt 

neutron density. In this chapter, the transient performance of the 

system is investigated with combined estimation and control. 

7.2 Combined estimation and control 

In Chapter 6, the estimator equations were derived with the 

assumption that the plant was not under control. With the plant under 

control, the linear prediction Eq. (6.32) is modified as follows: 

2k ' V A - 1 + ^ v (7.1) 
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and the linear filter Eq. (6.33) generates x^ using x^ of Eq. (7.1) and 

the y^ measurement. The control variable u, is computed from 

and the predicted estimate of x. is obtained by using Eq. (7.1). 

With control, the nonlinear plant Eq. (6.54) becomes 

and Eq. (6.59) is written: 

31(2Sk-i. V l ^ 
F._, = • 1 „ ^ ' (7.4) k-1 ^^-1 

Equation (6.70) for the nonlinear filter remains unchanged, except that 

F,_, is computed using Eq. (7.4), and the new form for Eq. (6.71) is 

4^' = 1(4-1. Vl) + Vl(4-1 - 4-l) (̂ -5) 

At the end of the iteration sequence 

% = 4""̂  (7.6) 

and the control variable u^ is computed from 

"k = ̂ ^ (7-7) 

With c o n t r o l , the nonl inear p lan t Eq. (6.75) i s 

X = £ ( x , u) (7 .8) 

and the value of x, i s obtained by i n t e g r a t i o n : 

iik = 2Sk_i + J ^(x. \_^)dt (7.9) 
0 

The variational Eq. (6.77) remains unchanged, except that G defined by 
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Eq. (6.78), is replaced by 

G ^ ^ (7.10) 

7.3 Combined estimation and control with delay 

The preceding calculation of the control variable assumed that a 

measurement is made at t = kT, the estimator equations are solved 

Iteratively for a new estimate, the new control input is calculated, and 

the control is applied at t = kT. A more realistic control analysis 

should consider that a finite time is required to compute a new estimate 

and control input. The fastest sampling rate is determined by the time 

T required to execute the calculations outlined above. 

The estimation equations remain valid, except that the control 

input must be delayed by one sample interval. Instead of using 

Eq. (7.7) to calculate the control at u, , Eq. (7.3) with ci,_, is used to 

predict the system state at t = kT: 

^ = l(H,_i. Vl> • ('-̂"̂  

Finally, the control input to be applied at t = kT is obtained using 

Eq. (7.10), with the result that 

"k - »ik ^'-''^ 

If the calculations are completed in less than T seconds, u, is stored, 

until t = kT, and then applied as an input after the measurement is 

made. 

The new sequence is: 

1. Obtain a measurement y, . 

2. Apply the previously calculated control input u, . 
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3. Solve the estimator equations to obtain x, . 

4. Use the estimator output x^ and control input u, to predict 

the state of the plant at t = (k+l)T. 

5. Use the predicted estimate 2V . to calculate a new control 

input u^^^. 

6. Store the control input u, . until the next measurement at 

t = (k+l)T. 

7. Repeat the sequence. 

If the total time to execute the above sequence is equal to the sampling 

period T, then the storage time is zero. 

7.4 Nuclear control system performance 

The performance of the control system, consisting of an estimator 

cascaded with the linear control law, is investigated with the plant 

described first by a difference equation and second by a differential 

equation. 

The difference equation description of the plant is given by 

Eq. (4.78), and the measurement is given by Eq. (4.83). 

The matrix F . is obtained by differentiating Eq. (4.78) with the 

r e s u l t t ha t 

1-P,, 

k - 1 

expO - i n r 
• 'k-1 

"k-1 i - p k - r v i ^ 

0 

AT) 

ATz, 
k - 1 

a-p^_,)(i-p,. k̂-r - -k-rvi^) Vl -̂pk-rvi"̂  
• exp ( -

1-P 
-lxt7 

k - 1 
- AT) 

( 7 . 1 2 ) 

and if u^ = 0, Eq. (6.90) is used. The matrix H^ is given by Eq. (6.91). 
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The nonlinear differential equation of the plant is given by 

Eq. (4.35), and the differential equations for F are given by 

Eqs. (6.99) and (6.100), and F21 = 0 and F22 = 1. In the finite-

difference description, F is an explicit function of u^ , but in the 

differential description, F is not a direct function of u^ .. The 

influence of control on F arises through the simultaneous integration of 

Eqs. (4.35), (6.99), and (6.100), as shown in Appendix E. 

Figures 7.1 through 7.4 show the transient response for the system 

described by the finite-difference equations. These equations are 

solved by the Finite Difference System with Estimator and Control 

computer program. In Fig. 7.1, the response is for a step disturbance 

of p = 0.1$ with no delay required for estimation and calculation of 

control effort. Since the disturbance occurs immediately after the 

measurement, the control for ug is zero. At the end of the first 

sample, the estimator generates an optimal estimate hi, which is the 

same as the value given in Table 6.2, and the control ui = O.I73$/sec. 

After the second sample, the estimator generates the correct estimate of 

the system state, the control input is computed, and the neutron density 

deviation is driven to zero. For samples at t = 3 sec and greater, the 

neutron density deviation is zero, and the delayed neutron deviation and 

reactivity approach zero asymptotically. 

The transient response plotted in Fig. 7.2 is obtained by 

calculating the control input using Eqs. (7.10) and (7.11). The 

estimate generated from the measurement made at t = 1 sec, is used with 

ui = 0 to obtain a predicted estimate X2. This estimate is used to 

calculate U2. The estimate generated from the measurement made at 

t = 2 sec gives the true state of the plant. The estimate X2 ^^ "̂ '̂' 
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Fig. 7.4 Transient response of system described by 
finite-difference equations for EI = 10"^ and PQ = -0.1, 

with delayed and bounded control. 
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Fig. 7.6 Transient response of system described by differential 
equations for Ei = IQ-**, £3 = IQ-^, and PQ = 0.1, 

without control delay. 
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Fig. 7.9 Transient response of system described by differential 
equations for £i = 10-^, E2 = 10-"*, and PQ = 0.1, 

with control delay. 
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with U2 to obtain a predicted estimate X3. The control U3, calculated 

using 2C3, drives the neutron density deviation to zero, and the delayed 

neutron deviation and reactivity approach zero asymptotically. 

The control input U2 applied at t = 2 in Fig. 7.2 does not 

correspond to an optimal control because it is not generated from 

estimates which correspond to the system state. The control is con

strained [129, 130] by programming a hard limit of 0.15 $/sec on u^: 

luĵ l < UL (7.13) 

where 

UL = 0.15 $/sec (7.14) 

Figure 7.3 shows the transient response with u^ constrained. The 

neutron density deviation at t = 3 is closer to normal, and U3 drives 

the deviation to zero. 

Figure 7.4 shows the system response to a reactivity disturbance of 

-0.1$ with u^ constrained. 

Figures 7.5 through 7.12 show the transient response for the system 

described by differential equations. These equations are solved by the 

Differential System with Estimator and Control computer program using 

specified values for the iteration accuracy EI and for the integration 

accuracy E2. 

The transient response to a step disturbance of p = 0.1$ with no 

control delay is shown in Fig. 7.5 for £1 = 10-"* and £2 = 10-^. 

Comparison with Fig. 7.1 shows that the control U2 does not drive the 

neutron density deviation to zero at t = 3 sec. This is due to an error 

in X2. However, the control 03 drives the neutron density deviation to 

zero, and the reactivity and delayed neutron precursor density approach 
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zero asymptotically. In Fig. 7.6, where £2 = IQ- , the estimate X2 is 

closer to the true state. This results in a U2 which drives the neutron 

density to approximately zero. For the estimate Ai, At = 0.125 sec for 

the first iteration and At = 0.25 sec for the next three iterations. 

For the estimate ^ , At = 0.25 sec for two iterations. Thereafter, 

At » 1 sec. 

The transient response with control delay is shown in Fig. 7.7 for 

El " 10-"* and £2 = 10-^. Here, the deviation in neutron density is 19X 

at t = 2 sec and U2 = -0.276 $/sec. The integration increment is 1 sec 

for all Iterations, which results in large errors in the state 

estimates. The oscillations in the neutron density and reactivity are 

damped for this particular initial condition and set of parameters. 

Figure 7.8 shows the response with £1 = lO"** and ET = 10"'. The peak in 

the neutron density deviation at t = 5 sec is reduced, and greater 

damping is shown in the oscillatory behavior. In Fig. 7.9 for £[ - 10" 

and £2 - 10"'*, the estimate Xt, results in U5 which drives the neutron 

density deviation to zero. Except for a neutron density deviation of 

1.26% at t = 5 sec, the response is similar to that plotted in Fig. 7.2. 

Four iterations are required for x̂i with an integration increment of 

it = 0.0625 sec. The three iterations for xo use integration increments 

of 0.0625, 0.125, and 0.25 sec, consecutively. Estimate X3 is obtained 

in one iteration with At = 0.0625; Xi, is obtained in two iterations with 

At = 0.125 sec. The next two estimates, ̂ 5 and ^ 5 , are obtained in one 

Iteration with At = 0.5 sec. Estimates for t = 7 sec and greater are 

obtained in one iteration with At = I sec. Thus ^1 requires the 

greatest number of calculations with 64 solutions of the integrator 

equations. 
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Figure 7.10 shows the transient response for EJ = 10"**, E2 = 10"^, 

with delay and a control bound of 0.15 $/sec. The integration Increment 

is 0.5 sec for the first iteration and is I sec thereafter. In compari

son with Fig. 7.3, the neutron density deviation has an error of 1.7% at 

t = 5 sec. 

In Fig. 7.11 where E2 = 10"', the neutron density deviation at 

t = 5 sec is 0.4%. The first iteration requires a At = 0.125 sec, and 

the next three iterations are with At = 0.25 sec to obtain xi. For X2, 

three iterations are required with At = 0.25 sec, whereas, one iteration 

is required with At = 1 sec for succeeding estimates. Figure 7.12 shows 

the system response for a reactivity disturbance of -0.1$. 
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CHAPTER 8 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

8.1 Summary 

The six-group point-model kinetics equations for a nuclear reactor 

were normalized, solved with a step change in reactivity, and compared 

to the transient response obtained using a prompt-jump approximation. 

This demonstrated that for the control system investigation, it is 

satisfactory to use the prompt-jump approximation with a resulting 

reduction in order of the system. A further approximation was intro

duced by using a single group of delayed neutrons. The decay constant 

for the one-group model was selected by making a comparison with the 

transient response of the six-group model at 1 sec. The rate of change 

of reactivity was chosen as a control input by neglecting the control 

rod motor time constant. 

State-space concepts were introduced and vector matrix notation was 

used to express: the six-group point model kinetics equation, the 

normalized six-group kinetics equation, the six-group prompt-jump model, 

the one-group kinetics equation, and the one-group prompt-jump model. 

A first-order Taylor series expansion was used to linearize the one-

group prompt-jump equation. The one-group prompt-jump equation and the 

linearized equations were solved with a discrete-time input. 

An optimal stationary feedback control law was used to minimize a 

quadratic performance index for a discrete-time system. A 

<̂J 
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performance index was defined which consisted of the sum of the squares 

of the neutron density deviation. This index was augmented to include 

terms in reactivity and control. For selected values of the weighting 

coefficients, the stationary feedback matrix was calculated using an 

iterative digital computer program. System transient behavior was 

plotted to demonstrate the influence of the weighting coefficients. For 

the performance index as defined, the neutron density deviation is 

driven to zero in one sample interval after a step disturbance in 

reactivity. The control law assumes that all state variables are avail

able, but the specific variables reactivity and delayed neutron precur

sor density cannot be measured. 

Kalman's filter was derived for a linear deterministic system by a 

matrix inversion lemma and by minimization of a least-squares cost 

function. The resulting filter equations showed the relationship of the 

optimal filter gain to the state transition and measurement matrices. A 

nonlinear estimator was derived by minimizing a least-squares perfor

mance index and iteration was used to solve the resulting nonlinear 

equations. The filter derivations were based on the assumption that the 

system was described by finite-difference equations. Therefore, the 

plant and variational equations were integrated to obtain the necessary 

numerical values required by the estimator. 

An algebraic solution of the reactor equations was derived to 

obtain the estimated system state after a step disturbance in reactivi

ty. This solution was compared to the solution obtained by iteration to 

measure the performance of the nonlinear estimator. A digital computer 

program was used to solve the estimator equations and iterations were 

performed automatically until the estimator performance index was 
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reduced to a specified value. The performance of the estimator for a 

nuclear system described by finite-difference equations was investigated 

with different iteration accuracies. Because of its one-step starting 

feature and error estimation, the Kutta-Merson algorithm was used to 

integrate the plant and variational equations. The error estimate was 

used to automatically adjust the Integration step size to meet a 

specified accuracy requirement. The performance of the estimator using 

integration was Investigated as a function of iteration accuracy and 

integration accuracy. 

Control of a nuclear reactor was investigated by cascading the 

optimal estimator with the optimal controller. After a reactivity 

disturbance, the optimal estimator requires two samples to estimate the 

true state of the plant. After the second sample, the optimal con

troller drives the neutron density deviation to zero in one sample. If 

it is assumed that one sample interval is required to perform the esti

mation and control calculations, then the delayed neutron deviation is 

driven to zero in one sample after the third measurement is made. A 

constraint on the control variable was introduced to reduce the 

magnitude of the control input applied after the second estimate is 

made. The performance of the cascaded control system with an estimator 

using integration was investigated as a function of iteration accuracy 

and integration accuracy. With a small integration step size, system 

performance with integration is equal to that of the system described by 

finite-difference equations. The penalty for increased accuracy is an 

Increase in computation time. 
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8.2 Conclusions 

The optimal control law derived for a discrete-time linear system 

with a quadratic cost function demonstrated that a deviation in neutron 

density could be reduced to zero in one sample interval. The stationary 

feedback control law for the reactor was derived by linearizing the 

reactor equations around the desired nominal values. The plotted 

responses (Figs. 5.1 - 5.12) are idealistic because the optimal control 

requires knowledge of the reactivity and delayed neutron precursor 

density at each sampling instant. From a process standpoint, this is a 

physical impossibility, because these variables are not measureable and 

therefore must be estimated. 

The nonlinear estimator using iteration works very well for a 

system described by nonlinear plant and measurement difference equations. 

If integration is used to estimate the state of a system described by 

a nonlinear differential equation, the integration step size must be 

reduced to maintain estimation accuracy; as a consequence, the computa

tion time is increased. For higher-order systems, the combination of 

iteration and sequential integration can easily result in an estimation 

time exceeding one second. Integration of a set of simultaneous equa

tions can be more profitably assigned to an analog computer with a 

factor of ten applied to the problem time scale. Thus, an integration 

over one sample interval in problem time can be obtained in one-tenth of 

a sample interval in real time. The number of equations to be inte

grated will not change the integration time, since all equations are 

integrated simultaneously. Thus, the nonlinear estimator becomes a 

hybrid system, with a digital computer solving the estimator difference 
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equations and an analog computer solving the system differential 

equations. 

The cascade combination of an estimator and controller results in 

a control system whose performance is no longer equal to that of a 

system without an estimator. Whereas, the linearized reactor equations 

result in a linear stationary control law which controls the nonlinear 

system satisfactorily under the assumption that all state variables 

are measureable, the performance of the cascaded system demonstrates 

that the estimates generated for the nonlinear system result in a large 

control input at the first sampling instant after a disturbance. 

Inclusion of computation time delay results in further degraded perfor

mance. A bound on the control variable can be used to limit the control 

inputs until the estimator establishes the true state of the system. If 

an integrator is included as part of the nonlinear estimator, the 

integration step size must be reduced to even smaller values when a 

control input is present. 

The computer programs used to solve the estimator equations and to 

compute the control input are not compiled for minimum time execution; 

therefore, no conclusions can be made as to real-time control 

capability. 

8.3 Recommendations for future research 

A hybrid computer system should be used to establish feasibility of 

real-time control. An analog computer should be used to simulate the 

reactor system, and a digital computer should be used for the estimation 

and control calculations. The reactor equations should be expanded to 

include six groups of delayed neutrons. Use of the six-group model will 
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encourage inclusion of an integrator in the estimator, because an 

analytic description by finite-difference equations will be difficult. 

Starting with the one-group model, the regulator problem should be 

investigated with noise added to the plant and measurement equations. 

The stochastic system should be expanded to include the six-group model. 

The deterministic and stochastic one-group and six-group models 

should be used to investigate control of demand changes in reactor power 

level from source range to power operation, with and without reactivity 

feedback. 

At very low power levels, a nuclear reaction is a multiplicative 

Poisson process. Optimal estimation theory should be applied to the 

design of a reactivity meter. 

The methods of estimation and control applied to the kinetics equa

tions should be expanded to include the primary system, the secondary 

system, and the turbine-generator system, with automatic start-up, 

operation, and shutdown. 

Optimal control theory should be used to establish ultimate system 

performance without regard to cost. Since total optimization of the 

control of a nuclear plant includes the performance of the controller 

and its cost, an investigation should be made to determine whether a 

significant savings in equipment cost is possible by accepting slightly 

less than optimal performance. 
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APPENDIX A 

VECTOR-MATRIX DIFFERENTIAL EQUATIONS 

The homogeneous differential equation for a linear time-invariant 

system is given in vector-matrix form by 

x̂ (t) = Ax(t), x(to) = XQ (A.l) 

The solution to Eq. (A.l) is 

x(t) = (̂t - to)x(to) (A.2) 

where the state transition matrix is defined by 

*(t - to) = exp[A(t - to)] (A.3) 

The matrix exp(At) is defined by the infinite series 

exp(At) = I + At + P?t^l2\ + A't'/3! + ••• (A.4) 

Substitution of Eq. (A.2) into Eq. (A.l) yields 

i(t - to) = A4>(t - to) (A.5) 

Use of Eq. (A.4) in Eq. (A.5) verifies that Eq. (A.2) is a solution 

of Eq. (A.l). Note that when t = to, 

4.(0) = I (A.6) 

and the boundary conditions of Eq. (A.2) are satisfied. 

The state transition matrix t(t) can be calculated by using 

Eq. (A.4) 
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*(!) = I + At + A2t2/2! + A'tV3! + ••• (A-7) 

or by taking the Laplace transform of both sides of Eq. (A.l) to obtain 

sX(s) - x(0) = AX(s) (A.8) 

Rearrangement of Eq. (A.S) leads to 

X(s) = [si - A]"lx(0) (A.9) 

which alternately can be written as 

X(s) = <t(s)x(0) (A.IO) 

where 4'(s), the resolvent of matrix A, is given by 

*(s) = [si - A]"l (A.11) 

The state transition matrix *(t) is obtained by taking the inverse 

Laplace transform of both sides of Eq. (A.11) which can be expressed: 

4(t) = £"'[sl - A]"l (A.12) 

The solution to the nonhomogeneous equation 

x(t) = Ax(t) + Bu(t) (A.13) 

is obtained by first taking the Laplace transform of both sides 

to obtain 

sX(s) - x(0) = AX(s) + BU(s) (A.14) 

rearranging 

X(s) = [si - A]-lx(0) + [si - A]"lBU(s) (A.15) 

and then taking the inverse Laplace transform of both sides with the 

result that 

2i(t) = <t(t)x(0) + <Kt - T)Bu(T)dT (A.16) 

0 
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where the convolution theorem is used to obtain the integral term. 

If the initial time is given as tQ instead of zero, then 

x(t) = *(t - to)x(to)+ *(t - T)Bu(T)dT (A.I7) 

For a d i s c r e t e - t i m e input u, where 

u ( t ) = Uĵ  kT < t i (k+l)T (A. 18) 

Eq. (A.17) i s w r i t t e n 

^'^ ' "^ \[ xM - $(t - t, )x,, + u^ I {.(t - T)BdT (A.19) 

x ( t ) = *(t - t^ )x^ + u^ •l>(T)BdT (A.20) 

The i n t e g r a l term of Eq. (A.20) can be evaluated by i n t e g r a t i n g 

Eq. (A.7) from zero to T: 

T 
•I'(T)dT = IT + AT^/2 + A ^ ' / 3 ! + ••• (A.21) 

0 

Multiplication by A of both sides of Eq. (A.21) yields 

fT 
A *(T)dT = AT + A2T2/2 + A'T'/3! + ••• (A.22) 

The unit matrix can be added to both sides of Eq. (A.22) as follows: 

I + A <t(T)dT = I + AT + Pp-'fi/l + A^T^/3! + (A.23) 

' 0 

but the right hand side of Eq. (A.23) is *(T). Therefore, 
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I + A 'I>(T)dT = <I>(T) (A.24) 

0 

which can be rewritten 

^ 4(T)dT = A"l[*(t - t.) - I] (A.25) 

^0 " 

if A"' exists. Substitution of Eq. (A.25) into Eq. (A.20) yields 

x ( t ) = <f(t - t,^)X|^ + A- l [<t ( t - t^) - I]BUj^ ( A . 2 6 ) 

and at t = (k+l)T 

2Sk+l = *(T)Xj^ + A"'[<t(T) - I ] B u ^ ( A . 2 7 ) 

The homogeneous matrix differential equation of a time-varying 

linear system is 

x(t) = A(t)x(t), x(to) = xo (A.28) 

Any solution of Eq. (A.28) is given by 

x(t) = *(t, to)2i(to) (A.29) 

This is verified by substituting Eq. (A.29) into Eq. (A.28) with the 

result that 

*(t, to) = A(t)*(t, to) (A.30) 

and 

kt) = ĵ [*(t, to)x(to)] 

A(t)*(t, to)Jl(to) 

A(t)x(t) (A.31) 
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Also 

*(to, to) = I (A.32) 

and the boundary conditions are satisfied. Integration of Eq. (A.28) 

yields 

x(t) = x(tc) + A(T)x(T)dT (A.33) 

'to 

which can be solved by repeated substitution of the right side into the 

integral for x. The first substitution yields 

ft rt 
Ji(t) = i^(to) + A(T)[!c(to) + I A(v)x(v)dv]dT (A.34) 

•'to J to 

Define the operator 

Q( ) = I ( )dT (A.35) 
^to 

which leads to the following series as a solution of Eq. (A.22): 

x(t) = [I + Q(A) + Q(AQ(A)) + Q(AQ(AQ(A))) + •••]x(to) (A.36) 

Comparison of Eq. (A.36) with Eq. (A.29) shows that the state transition 

matrix for a time-varying system is given by: 

*(t, to) = I + Q(A) + Q(AQ(A)) + Q(AQ(AQ(A))) + • " (A.37) 

If A is constant matrix, then 

*(t, to) = I + A(t - to) + A2(t - to)^/2! + A'(t - to)V3! + ••• 

(A.38) 

which is the same as Eq. (A.7) with the argument replaced by t - to. 

Assume that the solution of the nonhomogeneous differential equa

tion 
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x(t) = A(t)x(t) + B(t)u(t), x(to) = xo (A.39) 

is given by 

x(t) = *(t, to)y(t) (A.'tO) 

Then ' 

x(t) = <I>(t, to)y(t) + *(t, to)y(t) (A.41) 

and Eq. (A.30) is substituted into Eq. (A.41) to eliminate i . Thus 

x(t) = <l.(t, to)y(t) + A(t)*(t, to)y(t) (A.42) 

Substitution of Eq. (A.39) into Eq. (A.38) results in 

x(t) = A(t)*(t, to)y(t) + B(t)u(t) (A.43) 

which on comparison with Eq. (A.42) results in 

4>(t, to)y_(t) = B(t)u(t) (A.44) 

and y ( t ) i s o b t a i n e d by i n t e g r a t i o n . Thus 

y ( t ) = y ( t o ) + <t'-^(T, t o ) B ( T ) u ( T ) d T ( A . 4 5 ) 
••to 

At t = to, Eqs. (A.32) and (A.40) result in 

ŷ (to) = 2l(to) (A.46) 

Equation (A.40) is solved for y(t) and substituted with Eq.(A.46) 

into Eq. (A.45) to yield 

*"^(t, to)x(t) = x(to) + *"'(T, to)B(T)u(T)dT (A.47) 
^to 

The solution for !i(t) is 

x(t) = *(t, to)x(to) + 1>(t, to). *-1(T, to)B(T)u(T)dT (A.48) 
^to 
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Using the properties of the state transition matrix 

1>~H-', to) - *(to, T) (A.49) 

and 

t(t, to)*(to, T) - *(t, T) (A.50) 

Eq. (A.48) can be written 

X{t) - * ( t , t o ) x ( t o ) + f ( t , T ) B ( T ) u ( T ) d T ( A . 5 1 ) 

^to 

For the d i s c r e t e - t i m e input defined by Eq. (A.18) , Eq. (A.51) 

becomes 

r^k+l 
^ ( V l ) = * ( V l ' ^ > ^ ( ^ > + \ J *(t^^,,T)B(T)dT (A.52) 

' k 

which can be w r i t t e n 

•^k+I » 
x^_^^ = *(k+I . k)>^ + u^ I 4.(t|^^^,T)B(T)dT (A.53) 

•^k 
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(B.l) 

APPENDIX B 

OPTIMAL CONTROL LAW FOR A DISCRETE-TIME LINEAR SYSTEM 
WITH A QUADRATIC PERFORMANCE INDEX 

For a discrete-time linear system described by 

2Sk+i - '^ + ° \ 

and a quadratic performance index of the form 

N̂ = I (̂ %c - < i ) ''•'' 
k=l 

the optimal control law can be found by the method of dynamic 

programming. 

There is a sequence: Uj, Ui, U2, ..-, ^_-^ which will make Ijj a 

minimum. Let the minimum value of I be denoted by 

f^[x(0)] =min J^ [xĵ Qx̂  + cu^.^l (B.3) 

Ul 

Vl 

For the last N-j stages of an N-stage process 

N 

V l 

The principle of optimality [132, p. 57] may be used to interpret 

the selection of UQ, ui, U2, ••*, û _-| as a sequence of decision pro

cesses. The principle of optimality states: "An optimal policy has the 
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property that whatever the initial state and the initial decision are 

the remaining decisions must constitute an optimal policy with regard to 

the state resulting from the first decision." 

Then, by the principle of optimality, Eq. (B.4) reduces to 

V j ( ^ ) • "i^ t^+l'^+l + ^"j + fN-(j+l)(^j+l)l (B-5) 

Starting with j = 0, 

fĵ (xo) = min [xit̂ i + cug + fjj_̂ (xi)] (B.6) 

fN-l(2il) = "In [iJffe + cuf + fĵ _2(x2)] (B.7) 

fl(2^.l) - gin [ 4 < ^ + <="̂ -l + fo(Xu)) (8-8) 

Define 

fo(2^) = 0 (B.9) 

Since the functional f is quadratic in x_, both f and f(j_/jj.i\ 

can be expressed in quadratic forms. Let 

Vj(ilj)=ii>N-ji^ («-̂ °> 

and 

V(j+ l ) (^ j+ l> = ViPN-(j+i)2ij+i (B-11) 

where the P matrices are n<n and symmetrical. 

On substitution of Eq. (B.ll) into Eq. (B.5) 

^.,%) - n.in [xJ,,Qx.^^ . cû ? + 4 , P , . ( , , , ) X j , l ] (B-^^) 
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Define 

V ( j + i ) = Q + V ( j + i ) ^'-''^ 

Then 

fN.j(-) = min [4iS^_(.^^)X.^^ + cuj2] (B.14) 

but X. is a function of u.. Then, after substitution of Eq. (B.l), 

Eq. (B.14) becomes 

f., .(x.) = min [(*x. + Gu.)''̂ S„ -.̂ ..(•t'x. + Gu.) + cu? ] (B.15) 
N-J -J u ' " T J' N-(J+1) T J J 

The minimum of Eq. (B.15) may be found by taking the derivative with 

respect to u. and equating the result to zero. Thus 

2[*x. + Gu.]\, ,._̂ ,,G + 2cu. = 0 (B.16) 
-J J N-(j+l) J 

which can be expanded to give 

x̂ *S., ,._̂ , ,G + G''̂ S„ ,.̂ . ,GU. + CU. = 0 (B.17) 
-J N-(j+l) N-(j+l) J J 

Taking the transpose of Eq. (B.17) and solving for u. results in 

! ! V ( i ± i ) l _ (,.,8) 

which may be expressed in linear form by 

"j = B^..x. (B.19) 

where 

'^V(i+i)^ 
BN-T = " — (B.20) 

' G Ŝ _̂ .̂ ^̂ G + c 
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'^'['^•^V(m)J* 
Vj = 1 (B-21) 

^ ['̂  + V(j+i)]'= + ^ 

The recurrence relationship for the P matrices is obtained by 

substituting Eqs. (B.IO), (B.13), and (B.19) into Eq. (B.15) to obtain 

a^Vj^j = xj(* + ^\./(^ + V(j+i)>(* + ^Vj)i^ 

+ CXJB;;_.B^_.XJ (B.22) 

Comparing both sides of Eq. (B.22) leads to 

V j = (* + ^\-/^^ + V( j+ i ) ) (* ^ ^Vj> ^ <=«N-jVj («•"> 

Equations (B.21) and (B.23) give the desired recurrence relationship for 

the B and P matrices. Starting with j = N-1, and P = 0 , the sequence 

is: B,, Pi, B2, P2. •••, Pjj_^, B^. 

When N-«° in Eq. (B.2), the control process becomes an infinite 

stage process, and the feedback control law given by Eq. (B.19) becomes 

time invariant. 
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APPENDIX C 

SERIES EXPANSION OF DISCRETE-TIME REACTOR EQUATION 

Integration of the reactor kinetics equations results in the 

following discrete-time solution for the normalized delayed neutron 

precursor density: 

"k+l 'k z exp 
1 - P,. 

-In 
\ 1 - Pk - V 

AT (C.l) 

which is unsatisfactory for numerical computation as u -K). 
k 

Equation (C.l) may be expanded in a Taylor series by defining 

1 - P,. 
f(u^) = in— 

= k - V 
(C.2) 

Then 

-'(V 

'(V 

1 - \ - V 
T2 

(1 - P^ - Uĵ T)2 

'(V =T 
2T' 

1 - P k - v T)3 

(C.3) 

(C.4) 

(C.5) 

and 

'(V 
(n - 1)1 T" 

(1 - p^ - u^T)n 

The Taylor series expansion for Eq. (C.2) is 

(C.6) 
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:(V 0 + 1-p^ "k + 2 ( l - p j 2 "k + • • • + n d - p j n "k + ••• (C-7) 
-k ' "^^ ^k 

Subs t i t u t i on of Eq. (C.7) i n to Eq. (C . l ) r e s u l t s in 

k+1 k z exp 
XT , AT^ , . . . , AT" n - 1 _̂  

I ^ + 2 ( l - p ^ ) 2 " k + ••• + n ( l - p ^ ) r t \ + - - - - A T 

(C.8) 

The first and last terms inside of the bracket may be combined with the 

result that 

ATp,, 

k+1 k z exp 
k , AT-̂  , ... , AT" n-1, . 

1 ^ + 2(l-p^)^ \ + + nd-P^)-^ \ + 

Let 

X - u^T/(l - p^) 

Then Eq. (C.9) may be expressed as follows 

"k+l 'k z exp 
n-1 

1 ^ (\ + 2 + 3 + *-n + ^ 

(C.9) 

(CIO) 

(CU) 

When u^ = 0, X = 0, and Eq. ( C U ) reduces to Eq. (4.75). 
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APPENDIX D 

PROOF THAT ONE ERROR TERM OF OPTIMAL ESTIMATOR IS ZERO 

i+1 , 
For the nonlinear estimator with iteration, the estimate x, _i is 

given by 

v i = V l + i«X + <-i<\\-i^" f^k-i<tyk - h(4) 

+ \ ( 4 - i ( V i » ] + i 5 X ( ^ - V i ) } (°-^) 

It can be demonstrated that 

4 ( £ - x^_l) = 0 (l'-2) 

throughout the iteration sequence by first rearranging Eq. (D.l) and 

multiplying both sides to obtain 

T T T i+1 T T 1 T T i 

liyia + V A W i ^ V i = V A W i V i + ^k-Ai^k - ^(^^ 

+ Hj^(x^ - f(xj^_^))] + H ^ H ^ (D.3) 

T T 
Then, if the term F H^H^F â  is added and subtracted to the right 

side 

liiX ^ ^ k - X W i J v l = < - X \ \ - i ^ + ^ + ^k-i<[\ 

- h(4) + H 4̂ - H,̂ f(4_̂ ) - Ĥ F̂ _̂ a 

+ W i V i i (i'-^> 

If e is defined 



e ' - f (4 - i ) + V i t ^ - V i i 

substituted into Eq. (D.4) 

(D.5) 

T T T 1+1 T T T T T 

tiiX ^ fk-i<"kVl] V I = [4«a ^ Vl»k«k^k-ll^ ^ ^k-I^ty, 

- h(x^) + H^(x^ - |_Sl (D.6) 

and both sides are multiplied 

\-\--^ [H'A + 'l-A.\-i^'''lA^\ - ̂ (4> ^ \^\ - '̂)) 
(D.7) 

If the term a_ i s sub t rac ted from both s ide s of Eq. (D.7) and the 

r e s u l t i n g equat ion i s m u l t i p l i e d by H 

+ \ ( 4 " î )i (°-̂ ^ 
If the left side of Eq. (D.8) is equal to a zero column vector and the 

error terms in the bracket on the right side are not zero, then 

H (h'̂ n + F,"̂  IH,\F, ,]"'F,'^ ,H7 = 0 (D.9) 
-a -a-a k-1 k Tc k-1 k-1 k. — 

The equa l i t y of Eq. (D.9) can be demonstrated by using the matrix 

invers ion 

^ - 1 

H 

»kVi 

^ 
(D.IO) 

v i = «"'i«: 1 d < i 
^ 

where 

T T T 
M = HH + F^^_^H^H^F^_^ 

(D. l l ) 

(D.12) 
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Multiplying both sides of Eq. (D.ll) by the composite H matrix yields 

\ - l \ 
^-1 

H 
—a 

\ - l \ 
«"'t«a '\-lV 

y i . 

(D.13) 

The left side is equal to the measurement vector, therefore Eq. (D.13) 

can be written 

(D.14) 

Since v and y, are independent, the partioned matrix of Eq. (D.14) is 

an nxn unit matrix, and 

i a 

^k 

H M"'H''̂  IH M"1F,'̂  ^H!̂  
—a —a i—a k - 1 K 

S-iV~'^\\-i\'^'^liK 

^ 

^k 

H M'^H^ = I 
—a —a 

(n-1 X n-1) 

H M"1F,'̂  ĤJ"̂  = 0 (n-1 X 1) 
—a k-1 K — 

F, ^HJ^M"1H^ = ^ 
'k-1" 

(1 X n-1) 

VlVVA = 1 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

Equation (D.9) is verified by Eq. (D.16). 

Since the iteration sequence is started with x^_. = 2.' the first 

error correction term contributed by H (̂  - x* ) is zero, and all 

subsequent values are zero. Therefore, the term H (£ - 2Si,_i) ""̂ V ̂ ^ 

omitted from the estimator. 
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APPENDIX E 

DIFFERENCE SOLUTIONS BY INTEGRATION 

Although numerical Integration is used in the digital computer 

calculation of the reactor state estimates, the reactor equations can be 

integrated analytically to demonstrate that F .. obtained by integration 

is equal to F .. obtained by differentiation of the plant difference 

equation. The following equations are Integrated simultaneously from 

zero to t: 

z(t) = Az(t)p(t)/[1 - p(t)] 

P(t) = V 

*il(t) - Ap(t)4iii(t)/[1 - p(t)] 

z(0) = z 
k-1 

p(0) = p 
k-1 

fll(O) - 1 

(E.I) 

(E.2) 

(E.3) 

•l2(t) = Ap(t)*ii(t)/[I - p(t)] 

+ A z ( t ) / [ 1 - p ( t ) ] 2 

F i r s t , Eq. (E.2) i s i n t e g r a t e d to ob ta in 

P(t) - P^.i + u^.^t 

*12(0) = 0 (E.4) 

(E.5) 

which is substituted into Eq. (E.l), yielding 

/ 1-P,. 
z(t) = Zj^_^exp ln\ 

"k-l 

V l »^-fk-rvi' 
- At (E.6) 

Next Eq. (E.5) is substituted into Eq. (E.3) and integrated 
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't'll(t) = exp ^n 
1-P k-1 

Vl l^-vrvi' 
At (E.7) 

Finally, Eqs. (E.5), (E.6), and (E.7) are substituted into Eq. (E.4) 

and integrated, with the result 

('12(t) 

Atz. 
k-1 

( i -Pu-i)( i -Pk-rvi ' ) exp Hn 
1 - P 

k-1 

Vl l^-vrvi', 
At (E.8) 

At t = T, Eqs. (E.7) and (E.8) agree with matrix Eq. (7.12), which is 

obtained by differentiating the plant finite-difference equations. 
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APPENDIX F 

KUTTA-MERSON INTEGRATION ALGORITHM 

Merson [126] proposed an integration method which does not require 

a special starting feature and which can be used with automatic interval 

adjustment. The Kutta-Merson process uses the equations 

Yl • Yo + 3hf(xo, Yo) (F.I) 

72 - YO + |hf(xu, yo) + |hf(xo + ^ , yi) (F.2) 

y3 - Yo + |*if(xo, Yo) + |hf(xo + ̂ h, y2) (F.3) 

ŷ  = YO + |hf (xo, Yo) - |hf (xo + ̂ h, y2) + 2hf (xo + ̂ , Ys) (F-A) 

YS - Yo + |hf(xo, yo) + 3hf(xo + ̂ , yj) + |hf(xo + h, y^) (F.5) 

« 

Merson showed that the error in yi. is -h^y /120, and in y5 is 

-h^y /720; and that a good estimate of the error in the computed ys is 

0.2(ŷ  - ys). 

Automatic interval adjustment is accomplished by specifying the 

integration accuracy E2 and adjusting h. If 

|0.2(y^ - ys)! > E2 (F-6) 

h is halved. If 

64 |0.2(y„ - ys)! < Ej (f-7> 

then h is doubled. 
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The advantage of the Kutta-Merson method is that It facilitates 

rapid interval selection for exploratory calculations requiring 

specified accuracy; however it does require additional computation time 

in comparison to other methods. 
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APPENDIX G 

DIGITAL COMPUTER PROGRAMS 

Page 

1. Roots of prompt jump equation \^^ 

2. Reactor response to step delta k 146 

3. Calculation of feedback matrix 147 

4. Calculation of transient response 149 

5. Plot program for transient response 151 

6. Analytic estimator solutions 154 

7. Finite-difference system with estimator and control 155 

8. Differential system with estimator and control 159 
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1, ROOTS OF P R O M P T JUMP E Q U A T I O N 

10 

11 

1? 

16 
17 
13 

14 

DIMENSION S(7). 
FORMAT (IHl) 
FORMAT <F12,8) 
fORMAT (9X, IHB, 16X. IHS) 
FORMAT (E14.8, 4X, E14.8) 
FORMAT (IH ) 
All) = 0.038 
A(2) s 0.213 
Al3) e 0.188 
A(4) : 0.407 
A(5) = 0.128 
A(6) = 0.0^6 
U(l) ! 0.0127 
U12J = 0.0317 
U(3J = 0.115 
0(4) = 0.311 
1)15> = 1.40 
J((5) = 3.87 
ii(l J = 0.01 
S(2) = -0.014 
s(3)= -0.065 
b(4) s -0.19 
b(5) s 
i>(6) s 
b(7) s 
ALPHA 

8(7). A(7) . D(7),ST(7) 

-1.25 
-3.75 
-65000, 0 
65000,0 

X » 1. 
RHO = 
tRR « 
DO 15 
bT( i) 
SUM 1 
SUM 2 
uo 12 
SOMl : 
SUM2 : 

.1 

.OE-7 
' 1,7 
0.0 
0.0 
0.0 
s 1.6 

SUMl + 
SUM2 • 

A(J) •(S(1)/(S(I)*D(J)>)**2 
A( j)*i;( J)/(S( I )*D( J))**2 

CONTINUE 
3(1) = (RHO - SUM1)/(SUM2 • X/ALPHA) 
UIFF = S(I) - ST(I) 
src i) = S( I) 
WHITE TYPE 2. b(1 ) 
IF (DIFF) 16. 17, 1/ 
UIFF = - DIFF 
IF(DIFF - ERR) 13, 13. ll 
SUM 3 = 0.0 
uo 14 K = 1,6 
SUM3 s 3UM3 • A(K)/(S(I) • D(K)) 
CONTINUE 
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I'' 

B I I ) = ( S U M 3 •" 

w . < l T e T Y P E 5 

C U N T I N U t 

H r ^ l w T 1 

X / A L P H A ) / I S U M 2 • X / A L P H A ) 

f ' H l N T 

P R I I N T 

P U N C H 

END 

(u( n > 
( t i ( I ) ' 

S ( I ) , 

S ( I J , 

1 = 1 , 7 ) 

1 = 1 . 7 ) 
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2. REACTOh RESPONSE TO STEP DELTA K 

DIMENSION 8 ( 7 ) . b(7) 
1 FORMAT (IHl) 
2 FORMAT (2F16.8) 
3 FORMAT (6X, 4HTIME. 12X, 4HFLUX. 12X. 6HFLUX l,/> 

READ 2. ( B C D , S C I ) . 1=1.7) 
P R I M 1 
PRINT 3 
QELT s 0,0001 
DO 11 N = 1.101 
T = (N - 1) • DELT 
F L U X = o,0 

00 10 I = 1,7 
n FLUX = FLUX + BCD 

PRINT 2. T. FLUX 
11 CONTINUE 

END 

• EXPF(S(I)*T) 
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3. C A L C U L A T I O N O F r e E D 3 A C K M A T H I X 

21 
11 

20 
1<! 

i* 

15 

16 
17 
18 
I'J 

DIME 
1H(7) 

10 FORM 
FORM 
FORM 
READ 
REAL 
R E A U 

FORM 
ICOIMT 

13 FORM 
PRIN 
PHIN 
FORM 
PRIN 
FORM 
PRIN 
FORM 
t- ORM 
FORM 
FORM 
PHI ( 
P H K 
P H K 
PHI ( 
H(l) 
H(2) 
Ull. 
Q(l> 
0(2, 
0(2 
PRIN 
PRIN 
PRIN 
00 1 
DU 1 
P(I, 
BITE 
B2TE 
DO 1 
DO 1 
S(I. 
HTSH 
DO 1 
DO 1 
HTSH 
DEN 
00 1 

ion 

9̂  

101 

102 

NSION 
.PSK 
AT (F 
AT (4 
AT ( I 
11, 
10, 
10-

AT (1 
ROL P 
AT (1 
T 12 
T 13 
AT (1 
T 14, 
AT (1 
T 15 
AT (1 
AT (1 
AT (1 
AT (1 
1,1) 
1,2) 
2,1) 
2,2) 
= 0. 
= T 

1) = 
2) = 
IJ = 
2) = 
T 16. 
T 16. 
T 17 

PHI ( 
7.7), 
16.8) 
Fl6.e 
1) 
N 
ALAM 

A, C 
H1//4 
ENALT 
H0,9X 

H ,4( 
ALAM 

HO,24 

7,7),h(7),Q(7,7),P(7,7),S(7,7),HTSPHH7), 
PSIPS1(7,7),BTB(7,7) 

BD,T 

0X51HCALCULATION OF FEEDBACK MATRIX W I T H 

,6HLAr'RDA,20X,lHT,23X,lHA,23X,lHC>23X,lHK) 

tX,F16.8,4X),llX, II) 
BD.T,A.C.N 
X,3HPHI,32X,1HH,33X,1H0) 

HO,10 
Hi),14 
HU.lX 
HO,IX 
= 1. 
» T • ALAMbD 
= 0. 
= 1. 

1. 
1. 
1. 
1. • 
PHI ( 
PHi i 

X,2F16.8.10X,F16,8,10X,2F16.8) 
X,lHS,29X,lHB,28X,3-IPSI,28y,lHP) 
.3(2F14.8,2X),2F14.3) 
,2Fl4.8.32x,2Fl4,8,2X,2ri4.8) 

ALAMBU 

l,l),HhI(l,2),H<l).3(l,l),0(l,2) 
2 , 1 ) , P H I (2,2),H(2),2(2.1),0(2,2) 

00 
00 
J) 
MR 
MP 
01 
01 
J) 

0. 
I 
J 

X HT 
s HTS 
05 K 

02 
02 

= 1,N 
= l.N 
0. 
0.0 
0.0 
= l.N 
= 1,N 
0( I.v 

= l.N 
= l.N 
SH • 
H • C 
= l.N 

) * P(I,J) 

H( I) • S(l.J) . H(J) 
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H 
0 
0 

104 H 
lOb B 

U 

n 
p 

U 

n 
p 
D 
D 
p 
0 
0 

108 B 

106 

107 

109 

TSPHI 
U 104 
0 104 
TSPHI 
(K) s 
0 106 
0 106 J 

S H I , J) 

0 107 I 
0 107 J 

(K) = Q. 
I =1.N 

J = l.N 
(K) = HTSPHl (K) 
-HTSPHI(K)/DEN 

H(l> • S(I. J) • P H H J . K ) 

l.N 
l.N 
P H K I. J) 
l.N 
1,N 

S I P S K I, J) = U, 
0 107 K » l.N 
0 107 L B 1,N 
S I P S K I.J) = P S I P S K I.J) 

D 
0 
P 
U 
I 
0 
I 
y 
u 
u 
i 

34 D 

0 108 I = l.N 
0 108 J = l.N 
TB( I. J) = B C D • B U ) 
0 109 I = l.N 
0 lOg J * l.N 
(I.J) = PSIPS1(1,J) • C * 9TB<I,J) 
IFFl = BITEMP - B(l) 

H(I) • B(J) 

* PSI (K, I ) * S<K,L) * P S I a , J ) 

3 0 
31 
32 

33 

F (DIFFl) 30,31,31 
IFFl = -DIFFl 

F(DIFF1 - O.OOOOnOl) 33,33,32 
ITEMP = B(l) 
0 TO 99 
IFF2 = B2TEMP - B(2) 
F (DIFF2) 34,35.35 
IFK2 = -DIFF2 

35 1F(DIFF2 - O.OOOOnOl) 37,37,36 
36 b2TfcMP = Bl2) 

GO TO 99 

37 PRINT 18, S(l,l),S<1,2),B(1),B(2),PSI(1,1),PSI(1»2)» 
1P(1,1),P(1,2) 
PRINT 19. S(2,l).S(«.2),PSI(2,l),!»SK2,i!)»P(2.1)»P<2,2) 
PUNCH 21, B(li, B ( 2 ) . A, C 
CU TO 20 

111 END 
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4, C A L C U L A T I O N OF T R A N S I E N T R E S P O N S : 

in F O R M A T 

11 F O R M A T 
12 FQRHAT 

13 FORMAT 
14 FORMAT 

116X,2HP 
15 FORMAT 
16 FORMAT 

17 FORMAT 
in F U R M A T 

19 F O R M A T 
2'3 FORMAT 

REAL 18 
R£AO 13 
REAU 13 
REAU 13 
RtALi 13 

20 ReAU 13 
READ 19 
PRINT 1 
PRINT 1 
PRINT 1 
PRINT 1 
N = 0 
Pi = n. 
FLUX = 
U = HI 
RHO = R 
JELTAN 
DELTAZ 
PRINT 1 
P U IM C H 1 
2K = ZO 
RHO^ = 

21 DO 22 K 
X s U*K 
3cR = ( 

1*X*(1.0 
2X.{1.0/ 

L ! ZK« 
RHO = R 
FLUX = 
UELTAN 
DELTAZ 
N s N*l 
PRINT 1 
P U N C H 1 

22 C O N T I N U 

(lHl,28X,18HTflANSlENT RESPONSE) 
(1H0,20X,2HB1.27X,2H82) 
(IH .14X,F14.8,l5x,F14,8.59X.F4,0) 
(F14,8) 
( 1 H O , 3 X . 1 H N . 1 4 X . 1 H U » 1 7 X , 3 H ^ H 0 . 1 7 X , 1 H Z , 1 6 X , 4 H F L U X , 
I/) 
(IH , I4.4(3X,F16.8) ) 
( I 5 . 4 F 1 4 , B ) 

(I5.F14.8) 
(I'j) 
(4F16.B) 
( 8 4 X , F 16 , a ) 
. i l 
, T 
, ALAM8D 
. KHOO 
, 20 
, RUNNC 
, dl, 82, A.C 
0 
1 
2, BI, B2, RLNNO 
4 

Z0/(1.0 
• (20 -
HOO 
= F L U X - i.o 
= 20 - 1.0 
5, N, L. RHO 
6, N, u. RHO 

- RH(;o) 
1. n) • B<i RMOn 

DELTAZ, DELTAN 
DELTAZ, DELTAN 

RHOO 
= 1,10 

•T/(l.J-RHOK) 
A L A M B D « K * T / ( 1 . 0 - H H U K ) ) » ( R H D K ' ' 
/4.0*X*(l.n/5.0*X.(1.0/6.0*X« 
9.0*X/10.0) )))))))) 
EXPF(SER) 
HOK • L*X*T 
Z / ( 1 . 0 - R N O ) 
= FLUX - 1.0 
= 2 - 1 - 0 

5. N. L' R H O , D E L T A Z . D E L T A N 

6, N, L. KHO, DELTAZ, DFi-TAN 

X.(1,0/2.0 
(1,0/7.0*X 

• X'd.0/3.0 
'(1.0^8,0* 
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23 
24 

2K = Z 
RHOK s RHO 
PI = PI • (FLUX - 1,0)**J 
U = Bl*(ZK-1.0)*B2*RHOK 
PUNCH I7,N,U 
PRINT 25, PI 
IF (N-M) 21.23.23 
IF(SEN3E SWITCH 1) 24,20 
PAUSE 1 
GO TO 20 
E,4D 

A*RH0»*2 • C*U**2 
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5. PLCT PRO&RAM FOR TRANSIENT RESPONSE 

« 
1? 

31 

3? 
33 
34 

DIMENSION lN(Hl;,U(lll),RMO(lll),Z(lll),FtUX(lll),i(ln) 
FORMAT (F6,0) 
FORMAT (5F16.8) 
FORMAT (I5,4Fl4,e) 
FORMAT (IHO, 5Fl6.8,4X.F6.0 ) 
SN = 20.0 
S » 0.2 
SU « S 
SRHO C S 

SZ = S 
SFLUX s S 
RtAD 1. HUr NC 
READ 3. (N(I),U(I),RHO( I),Z(I).FLJX(I ).1=1,111) 
IhuNNC = HuN NO 
OICITl 
blt,IT2 
DO 27 J 

IRUNNO/in 
RUN NO - DIGIT! 10. 
1,3 
(2.0.2.0.1) 
(o.O'O.n.<) 
(0.0> 0.02,3) 
(D1G1T1,0.0,4) 
(10.0,0.0,3) 

P L O T F ( 0 . 0 , 0 . 0 , 2 ) 

PLOTF(DIGIT2,n.0.4) 

PLOTF 
PLCTF 
PLOTF 
PLCTF 
PLOTF 

X i 

X i 

X : 
X : 
X ! 
X I 

X : 

X I 

X : 
X : 
X : 

X : 

X : 

X : 
X : 

X : 

X I 

X I 

X : 

X 1 

X : 
X • 

00 
T 1 
X I 

IF(I - 5) 
X » PLOTF 
GO TO 33 
X • PLOTF 
X • PLOTF 
CONTINUE 

PLOTF 
PLOTF 
PLCTF 
PLCTF 
PLOTF 
PLOTF 
PLOTF 
PLCTF 
PLOTF 
PLCTF 
PLOTF 
PLCTF 
PLOTF 
PLOTF 
PLCTF 

34 I s 
0,5 • 
PLOTF 

.0 

.0 
• 0 

.0 

.0 

.0 

.12 

.0 

.0 

.0 

.0 

.0 

.1 

.0 

.0 

•11.0.3) 
Q.n.k) 
l.n.i) 
2.5,3) 
-2.5,4) 
2.0.3) 
,2.0,4) 
2.0,3) 
0 .0,3) 
0.(1,4) 
0.O.3) 
•2.0,3) 
,-2.0.4) 
•2.0,3) 
• 2.5, 

(0 
(0 
( 1 
(0 
I 0 

(0 
(0 
(0 
(0 
(5 
(0 
(0 
(0 
(0 
(0 
1,9 
I 
(T,-2,5,4) 
31.32,31 
(T,-2,44.4) 

(T,-2,3e.4) 
(T,-2,5,3) 

3) 
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35 

36 
37 
38 

14 

13 

i:̂  

18 

16 

17 

19 

20 

X = PLOTF 
X = PLOTF 
X » PLOTF 
X = PLOTF 
X s PLOTF 
X = PLOTF 
X = PLOTF 
X » PLOTF 
DO 38 I = 
T = 5.0 -
X » PLOTF 
IF(l - 5) 
X a PLOTF 
GO TO 37 
X = PLOTF 
X = PLOTF 
CONTINUE 
X E PLOTF 
X = PLOTF 
bo 14 I s 
A(I)=N( I ) 
All) = 0.. 
X = PLOTF 
X = PLOTF 

(5.0'»2.5,4) 
(5.0,•2.0,4) 
(4.88,-2.0.4) 
(5.0'«2.0,3) 
(5.0'2.0,4) 
(4.88,2.0,4) 
(5.0'2.n,J) 
(5.0,2.5,4) 
1,9 
0.5 * I 
(T.2.5.4) 
35.36,35 
(T.2.44,4) 

(T.2.3b,4) 
(T.i.5,3) 

(0.0.2.5,4) 
(0 .0, 0 .O.J) 
1,111 

3 
(SN,SU.l) 
(0 .O'O.n.i:) 

X = PL0TF(A(1).U(1)'3) 
DC 15 1=2 .110 
XrPLOTF(A(I),LlI),4) 
CONTINUE 
X = PLOTF(0.0,0,0,3) 
X = PLOTFlSN.SHhO.l) 
X = PL0TF(0.0,0,0,2) 
K = 0 
U = 2 • 
12 = 9 * 
DO 17 1 = 

11»K 
11 
11. 12 

X = PLOTF(A( I).RHO(1).3) 
C O N T I N U E 

K = K • 1 
IF CK - 10) 18.19,19 
REF = 0.0 
X s PLOTF(0.0,0.0,3) 
X = PLOTFCSN.b'i.l) 
X = PLOTF (0.0,REF.2) 
X » P L O T F C A d ) ' Z ( l ) , 3 ) 
K = 0 

2 1 l l = 2 • 11*K 
12 = 9 * U 
IJO 2 2 1 = 1 1 . 1 2 
X = PLOTF ( A ( 1 ) , Z ( 1 ) . 3 ) 

22 CONTINUE 
K « K * 1 
IF (K - 10) 2 1 . 2 3 . 2 3 

23 X = PLOTF ( 0 . 0 , R b F . 3 ) 
X = P L O T F ( S N , S F L U X , 1 ) 
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X s P L Q T F ( 0 . 0 , H E F , 2 J 

X = PLOTF (A(l), F L L X < 1 ) , 3 ) 
K s 0 

24 U = 2 * ll*K 
12 » 9 * Il 
00 25 I = 11, 12 
X « PLOTF(A(I»,FLUX(1).3) 

25 CONTINUE 
K = K • 1 
1F(K - 10) 24,26.26 

26 X«PLOTF(0.0,REF,3) 
X « P L O T F ( 1 . 0 , 1 , 0 , 1 » 

X 1 PLOTF(0.0,0,0,2) 
X » PLOTF (-5.0,17.5.3) 

27 CONTINUE 
GO TO 9 
ENO 
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6. ANALYTIC ESTIMATOR SOLUTIO^fS 

1 FORMAT (6F16.8) 
2 FORMAT (IHl) 

D = 0,31 
PRINT 2 
DO 10 N s 1,200 
RHO » -1,01 • 0,01 * N 
Z = EXPF(D * R H O / d . O - RHO)) 
V ' Z / ( 1 , 0 - RHO) 

HHOl = LOGF(Y)/(D*LOGF(Y) ) 
Zl = 1,0 - RHCl 
Z2 « Zl * EXPF(D*RHCl/(1.0 - R H O D ) 

10 PRINT 1. RHO, Z, Y, RHOl, Zl, Z2 
END 
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FINITE riFFEHENCb SYSTEM WITH cSTlHATOR AMD CONTROL 

12 
13 
14 
15 
16 
17 
18 
19 

20 

UIME 
IF (2, 
2X1FH 

4, x n 
I u F 0 R ̂  

l4hHi 

II FORM 
FORM 
FORH 
FCHh 
FORM 
F C R ̂' 
F u R ^ 
F C R N 
F ORM 
R C A L 

Pf AU 
PE AI
RE A b 
KcAL 
hEAt, 
PRIN 
PKIN 
PRIN 
tPSl 
N : 
PI = 

FLU* 

L : 
l.'T : 
UL -
YK = 
D z 

ALHr 
ALPh 
PRIi\ 
DELT 
U E L T 

PUNC 
KHCl* 
IK = 

DELT 
H i d 
Hl(2 
H T H I 

H T H I 

H T H I 

ION A 
, H2( 
2 ) . X ̂  
, H F T h 
P(2) . 
(IHl, 
, F14 
(IH 
(5X. 
(F14 
(IHO 
(IH 
( 15, 
(15. 
( 15) 
(4Fl 

b. M 

LPPA(2). Xl(4), X2(4), HTHl(2,2), 
2 ) , F.TH2(2,2), C2INV{2.?). 
ERRif), XPAR(4),Hl(2) . C2(2,2). 
F(2.2).H<;FTYt(2).HTHlDX(2),VECTOR(2),UELTXi(2) 
)(1C1FF (2) ,FxlnlF(2) , Y2(4) 

26x.ieHThANSl6NT RESPO MSE . 30 X , 4WBl =,Fl4.b,i;X. 
.8) 
) 
4(JX,ri6.e).27X,13) 
.8) 
,3X.lHN,14X,lHU,17X,3H^H0.17X,lHZ.16X,4HfLUX/) 
, 14.4(3X,F16.H) ) 
4F14,8) 

F14.8) 

6.8) 

3. 
3. 
3, 
V, 
3, 

10, 
11 
14 
1, 

AMBD 

, E2, A.L 

00 

1. B2 

Ofc-6 

n. 
= zo/i 1.0 - RHin) 

0.0 
C O 
1.0 
FLUX 

ALAMBD 
A d ) = 1.0 
A(2) = 0.0 
T 15, K, Nhco. ZO, F L U X 

AZ = ZO - 1,0 
Ar s FLUX - 1.0 
H 16, iM, L' KHOU, DtLTAZ, P E L T A N 
r RHOO 
ZJ 
: 0,1 
= 1.0 
= l.C 
,1) = 1.0 
,2) = 1.0 
,1) = 1.0 
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M T H 1 ( 2 , 2 ) = 1 , 0 
21 DO 2 2 K = 1 . 1 0 

IF l U ) 2 5 , 2 4 . 2 5 
24 Z = ZK * EXPF((ALAMbD • RHOK * K • 0 . 1 • T > / d . O - HHOK ) ) 

I'O 10 26 
25 Z ! Z K * E X P F ( ( A L A M B D / U ) . L O G F ( d . 0 - R M 3 K ) / ( 1 . 0 - R H O K - U * K * 0 , l * T ) 

l ) - A L A M B D » K « o . l * T ) 
26 FihU r RHOK * L * K * 0 . 1 * T 

F L U ^ : Z / d . O - R h O ) 
N = N * l 
P R I M 1 5 , N. RHC, Z . FLUX 
DELTAZ = Z - 1 . 0 
OELTAN = FLUX - 1 . 0 
PUNCH I6. N. L. RHO, DFLTAZ. DFLTAN 

22 CUNlINUE 
ZK = Z 
R H O K : RHO 

YK = FLUX 
L = 1 
X l d ) : A L F H A d ) 
Xl(^) I ALFHA(2) 
IF (U) 28.23.28 

2 3 fcXPU r EXPF(D*1*Xl(2)/d.O - Xl{2))) 
X 2 d ) = X l d ) • EXPL 
X2( i:) = Xl(2) 
(.U TO 2 7 

2M fcX"L = EXPF((C/L)*LLGF((1,0-X1(2))/d,0-Xl(2)-U*T))-D*T) 
X ^ d ) = X l d ) * EXPC 
Xcti) : Xl(2) • U • T 
bu TO 29 

?7 txPL = EXPF (D«l«Xl(t)/d.O - Xl(2))> 
XH4R(l) = X l d ) • EXPO 
AdAh(2) = >1(Z) 
F (1,1) = EXPO 
F(1.2) = ( D * T « X i d ) / d . O - Xl(2) )»»2)*EXP3 

UO TO 30 

2« EXPC = EXPF ( (i;/l)*Lt'5F( (i.o-yi(2) )/(1.0-Xl(2)-U*T) ) - D * T ) 
XtiAF>(l) = X l d ) * EXPC 
XdAh(2) = Xl(2) + U * ) 
F (1,1) = EXPC 
i-d.2) = n*T»Xl(l)*tXPC/( (1.0-X1(2) )*d.0-Xl(2)^U*T) ) 

30 F(2.1) = 0.0 
F(2,2) = 1,0 
P2(l ) = l . C / d .0 - X2(2) ) 
H2(2) = X2(l)/(1.0 - X2C2))«*2 
DO 31 I = 1.2 
00 31 J = 1.2 

31 HTH2(I.J) = H2(I) * P2(J) 
DO 32 I = 1,2 
h2F( 1 ) = 0.0 
DO 32 J = 1,2 

3^ H^F(I) = H2F(I) + Hi(J) * F(J,I) 
UO 33 1=1,2 
DO J 3 J = 1,2 



15? 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

4'! 

44 

5f̂  

MFTHF(I,J 
DO 34 I = 
DO 34 J s 
C2INV( I, J 
DbN2 = C2 
C2(l,l) = 
02(1,2) = 
02(2,1) » 
C2(2.2) = 
DO o5 I = 
X1ERH( I ) 
HXIERR = 
UO 36 I = 
HXlERP = 
P U = HXl 
DO 37 I = 
X2fcRFi( I) 
YH = X2(l 
Y£Rhl : Y 
P12 = YER 
HX2ERR = 
DO 38 I = 
HX2tRR = 
YERR = YE 
DO 39. 1 
H2FTYE( I ) 
UO 40 I = 
HTM1DX( I ) 
DO 41 I : 
VECTOR (I 
DO 42 I = 
UELTX1( I ) 
Do 42 J = 
D E L T X K I ) 
DO 43. I 
X1TEMP( I ) 
DO 44, I 
X l d ) = X 
1F(X1(2) 
X l d ) = X 

lDELTXi(2) 
Xl(2) = 0 
CONTINUE 
DO 47, I 
XinlFF( I ) 
DO 48 I s 
FX1DIF( I) 
UO «6 J s 
FX1LIF(I) 

UO 4g I z 
X2(l) = X 
PI = P U 
IF (PI -
L = L • 1 

) s M 2 F ( 1 ) * H2F{J) 

1,2 
1,2 
) s H T H K 1, J) • HFTHF( I, J) 
INV{1,1)*C<INV{2,2) - C2INV(1,2)*C2INV(2,1) 
C21NV(2.2)/DEN2 
-C21Nv(l,2)/DEN2 
- C 2 1 N V ( 2 . 1 ) / D E N 2 
C 2 I N V d , l » / D E N 2 
1 , 2 

= ALPHA( 1) - X l ( 1 > 
0 . 0 
1,2 

HXIESR + H K I) • X1ERR( I ) 
EhR»«2 
1.2 

- X2( I ) - XPAR( I ) 
)/ (1.0 - X2(2) ) 
K - YH 
Rl ••2 
0.0 
1.2 

HX2EfiR • Hi( 1) . X2ERR( I ) 
RRl • HX2ERR 
= 1.2 
= H2F(1) • YERR 
1.2 
= H K 1 ) * HXlbRR 
1.2 
) = P 2 F T Y E ( I ) • HTH1DX( I ) 

1 . 2 
= 0 . 0 
1 . 2 
= D t L T X l d ) • C 2 ( I , J ) • VECTOR(J) 

= 1 .2 
= X H D 

= 1 . 2 
K I ) • DELTXK 1 ) 
- 0 . 8 ) 4 6 , 4 6 , 4 5 
I T E M P ( l ) • D E L T X K I ) • ( 0 , 8 - U*T - X l T t M P l 2 ) ) / 

, 8 - U . T 

= 1 . 2 
= X l ( 1 ) - X 1 T E M P ( I ) 

1 . 2 
= 0 . 0 
1 . 2 
= F X l C l F ( i ) • F ( I , J ) • X l D l F F ( J ) 
1.2 

BAR( I ) • FX1D1F( I) 
• PI2 
EPSl ) 51,51,50 
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X2(2) 
YH, L 

If 10) 29,27,29 
51 Yh t X 2 d ) / (KG . X2(2)) 

^ = PI * (X2d) - 1.0) • B2 
PRINT 12, U. X2(2J, X2(l), 
PUNCH 17,N,U 
DO 56 I = 1,2 
DO 56 J = 1,2 

56 HTHKI.J) r HTH2(I.w) 
DO 57 I s 1,2 

57 ALPHA(1 ) = X2( 1 ) 
UU 58 I = 1,2 
H K I ) : H2( I ) 

5H A K i ) s X2l I ) 
IF (U) 61,60,tl 

f-n EXPO s EXPF(D*T.X1(2) /(1,0 - Xl(2>)) 
X 2 d ) = X l d ) * EXPC 
X2(2) = Xlt2) 
bU TO 62 

M EXPL = EXPF((C/L)*LCGF((1,0-X1(2))/(l,0-Xl<2)-U*T>»-D*T) 
X 2 d ) = X l d ) • EXPi; 
X2(2) : Xl(2) + U * T 

62 UT = BI * (X2(l) - 1.0) • 62 * X2(2) 
IF(UT - UL) 53,52,52 

52 UT = UL 
bO TO 55 

53 1F(UT * UL) 5-,55,55 
64 UT = -UL 
55 IF (N-M) 2l,b9,59 
59 CONlINUE 

(iO TO 20 
tND 
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8. D I F F E R E N T I A L S Y S T E M W I T H E S T I M A T O R AND CONTROL 

i<; 
13 
14 
1'? 

1* 
17 

l'< 
19 

20 

C O M M O N 

D I M E M S 
l F ( 2 . 2 ) 
2 X 1 P R R ( 

3 H 2 F ( 2 ) 
A . X l T E M 

in FOP^'A'' 
1 4 K H 2 = 

11 F O R M A T 
F O R M A T 
F U R M A T 
FORMAT 
F ORMAT 

F u R M A r 
F O R M A T 
F ORMAT 
F O R M A T 
READ 1 
R E A D 1 

READ 1 
READ 1 

READ 1 
REAL 1 
PR I N T 

P R I N T 
PRIivT 
tF'Sl = 

t P b 2 s 
N : n 

PI = 0 

FL'JX : 

U « 0 . 
UT = 0 
UL = 1 
Y R : F 
b = AL 
fc L P H (. ( 
A L P h A ( 
PRINT 

DtLTAZ 
DELTAN 
PUNCH 

RHOK S 
ZK = 7 
DELI = 
H i d ) 
H K < ) 
H T M K I 

U, 
ON 

, H2 
2),X 
.HFT 
P(2/ 
(iHl 
. Fl 
(IH 
(5X 
(Fl 
(IH 
(IH 
( 15 
(15 
(15 
(4F 

M 

H. E 
ALPP 
(2), 
2ERR 
H F ( 2 
,X1L 
,28X 
4.8) 
) 

,4(3 
4.8; 
0,3X 
. 14 

.4F1 

.F14 
) 
16.6 

PS2 
A(2). Xl(4), X2(4). R T H K 2 , 2 ) , 
HTH2(2.2). C2INV(2,2). 

(2), XRAH(4),H1(?). C2(2,2), 
,2),HiFTYE(2),HTHlDX{2),VECT0R(2),DELTXK2) 
1FF(2),FX1DIF(2). Y2(4) 
,18HTkiANSlENT RESPO ̂ SE, 30X, 4HB1 «,Fl4.8,5X, 

X,F16.8).27X.13) 

.lHN,i4X,lHU,17X.3H^H0,17X,lHZ,16X«4HFLUX/) 

.4(3X,F16.8)) 
4,8) 
.8) 

8, 
3, 
3, 
3, 
9, 
3, 
10, 
11 
14 
1, 
1. 

T 
ALAM6D 
zn 
bl, o2, 
RhOO 
HI. b2 

A.U 

E-6 
E-4 

ZO/d. 0 - RHCO) 
0 
.0 
.0 
LUX 
AMBD 
1) = 1.0 
2) = 0.0 
1 5 , N, L, R H O O , Z O . F L U X 

= ZO - 1,0 
= F L U X - 1,0 

16. N. L, RHOO, DtLTAZ, DELTAN 
RHOO 

0 
0.1 

= l.C 
= l.C 
,1) = 1.0 
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21 

24 

25 

2? 

H T H K I 
HTM1(2 
HTHK2 
DO 22 
IF (U) 
2 = ZK 
GO TO 
Z=ZK.F 
l)-ALAM 

26 RHO = 
FLUX s 
N I N* 
PRINT 
DELTAZ 
DELTAN 

PUN C H 
CONT IN 
WRITE 
L'f, = Z 
RHOK = 
YK = F 
L = 1 

Xld) 

XK2) 
Xl(3) 
XK4) 
CALL I 
XK3) 
XK4) 
CALL I 
F d , 1 ) 
F d , ? ) 
F ( 2 , 1 ) 
F(2,2) 
H2(l) 
H2(2) 
DO 31 
DO 31 
HTH«:( I 
DO 32 
H2F(I) 
DO 32 
H2F( I ) 
DO 33 
DU 33 
HF ThF( 
DO 34 
IJU 34 
C2INV( 
DEN2 = 
C2(l.l 
C2d,2 
02(2,1 
C2(2,2 

29 

30 

31 

32 

33 

34 

, 2 ) = 1.0 
, 1 ) = 1,0 
, 2 ) = 1.0 
K = 1 ,10 

2 5 , 2 4 . 2 5 
• EXPF( (ALAMbL * RHOK • K • 0 , 1 • T ) / ( 1 . 0 - HHQK)) 

26 
X P F ( ( A L A M B D / U ) » L O O F ( ( 1 . 0 - R H : K ) / ( 1 . 0 - R H O K - U « K * 0 . 1 * T ) 

B D * K « o . l * T ) 
RHOK + L * K » 0 . 1 * T 

Z / ( 1 . 0 - R H O ) 
1 
I S . N . U . R H C . Z . F LUX 

= Z - KO 
= FLUX - 1 .0 

1 6 . N, L ' RHO. DELTAZ, DELTAN 
UE 
TYPE 1 1 

RHO 
LUX 

= A L F H A d ) 
= ALPHA(2 ) 
= 1.0 
= 0 .0 
NTEGR ( X I , X2) 
= 1.0 
= 0 .0 
NTEGP ( X I , XBAR) 

s X b A R l 3 ) 
= XbAR(4 ) 
= 0 . 0 
= 1.0 

= 1 . 0 / d . O - X2(2) ) 
= X 2 d ) / ( l . n - X2(2) )«*2 
I = 1.2 
J = 1 ,2 
, J ) = H2{ I ) • H 2 ( J ) 
1 = 1 . 2 

= 0 . 0 
J = 1 . 2 

= P2F( 1 ) • H ^ ( J ) * F( J , I ) 
1 = 1 , 2 
J = 1 , 2 
I . J ) = P2F( I ) * H 2 F ( J ) 
I = 1 , 2 
J = 1 , 2 
I , J ) = H T N K I , J ) • H F T H F ( I , J ) 

C 2 I N V d . l ) * C < I N V ( 2 , 2 ) - C2 I NV ( 1 , 2 ) #02 I NV ( 2 , 1 ) 
) = C 2 I N V ( 2 . 2 ) / U E N 2 
) = - C 2 I N v d . 2 ) / D E N 2 
) = - C 2 1 N V ( 2 . 1 ) / U E N 2 
) = C 2 I N V d . l ) / D E N 2 
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DO 35 I = 1,2 
35 X1FRR( I) = ALPHA(I) - X l d ) 

HXIERR = 0.0 
DU 36 I = 1.2 

39 HXIERR = HXIERR • H K I ) . XlFRRd) 
P U = HX1ERR*«2 
UO 37 I s 1,2 

37 X2ERR( I) = X2( 1) - XFIAR( I) 
YH = X2(l)/ (1-0 - X2(2)) 
YERRl = YK - YH 
Pi2 = YERRl **2 
HX2tRH = 0,0 
UO 38 I = 1.2 

3S HX2ERR = HX2ERR • H,-(I) • X2FRR(I) 
YERR = YERRl • HX2EHR 
00 39. I = 1.2 

3g H2FTYE(I) = H2F(I) * YEHR 
DO 40 I = 1.2 

40 HTHIDY(I) - Hl(l) • HXlcRR 
IJO 41 I = 1,2 

41 VECTOR (I) = h2FlYE(I) • HTHIDX(I) 
DO 42 I s 1.2 
.lELTXld) = O.U 
DU 42 J = 1.2 

42 JtLTXKI) = DELTXKI) • n2(I.J) • VECTOR(J) 
•)0 43, I s 1,2 

43 XlTtMp(I) = Xl(1) 
i)U 44, I = 1.2 

44 i(K 1 ) : Xi( I ) + JEL rxK 1 ) 
1F(X1(2) - 0.8) 46.4f..43 

4!) X l d ) = XlTEMF(l) • DtLTxid) • (0.8 - U«T - XlTEMP(2)l/ 
lJFiLTXl(2) , 
XK2) = O.b - U • I 

4") CO M T I N U E 
uO 47, I = 1.2 

47 <1.11FF(I) = X K l ) - X I T E M B ( I ) 

UU 48 I « 1.2 
F X1DIF( I ) = 0.0 
JJ 43 J = 1.2 

4 3 FX1DIF{I) = FXICIF(I) • F(I.J) • XlDlFF(J) 
00 49 I s 1.2 

49 X2( 1) = X«AR( I ) • FX10IF( I ) 
PI » P U * P12 
IF (PI - EPSl ) 51.51.30 

50 L = L • 1 
W R I T E T Y P E 1 8 , L 
CO TO 2 9 

51 YH S X 2 d ) / d . O - X 2 ( 2 ) ) 
U « UT 
PRINT 1 2 , U, X 2 ( 2 ) , X 2 ( l ) , YH , L 
PU'tCH i ; . N . u 
•JO 56 1 = 1 . 2 
00 56 J = 1 . 2 

5h H T H K I . J ) = H T H 2 ( I . . ) 
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57 

58 

62 

52 

53 

54 
55 
59 

00 57 I s 1.2 

ALPHA(I) r X2(l) 
00 58 I s 1.2 
Hl(l) = H2(l) 
X K l ) = X2( 1) 
CALL INTEGP(X1. X2) 
UT = Bl • (X2(l> - 1.0) 
1F(UT - UL) 53.52,52 
UT = UL 
GO TO 55 
1F(UT • UL) 54,55,5S 
UT = -UL 
IF (N-M) 21.59.59 
GO TO 2 0 
END 

• 82 • X2(2) 

SUBROUTINE INThGR (Xi, Yg) 
COMMON U, H, EPS2 
OlMENSION Y0(4), Yl(4), Y2(4), F0(4), F l ( 4 ) , F 2 ( 4 ) , 

ieRR0R(4), F { 4 ) . Y(4), Xl(4) 
1 FORMAT (F14,a) 

I'l : 4 

H = 1.0 
'00 30 1 = 1,N 

3 0 Y 0( I) = X K I ) 
3'' LOC : 0 

M L O U 5 1 

31 îA = .33333333*H 
MR = .1J666667*H 
HO = .125«H 
HJ = .3 75*H 
Me = .5*H 
M F = 1. -3 • H 
Ho I 2.«H 
H-H = ,0&6666b7»h 
•iRITr TYPE 1. H 

4-i CALL FCT (YO. FO) 
JO 4 1 I=1.N 
YllI) = YO(I) • HA • FOlI) 

C A L L FCT (Yl, Fl) 

iJU 4 2 I = 1.K 
Y l d ) = YO(I) • H B ' F O d ) * HB*Fl(I) 

CALU FCr (Yl, F2) 
J(J 44 I =1. N 
Yl([) = YO(I) • HE«F0(1) - H F * F K I ) • HG*F2(I) 

CALL FCT (Yl, Fl) 
DO 45 1=1.N 

45 Y2(l) = Y0(1) * HB*F0(1) • HH*F2(I) • H B » F K I ) 
JO 34 1=1,N 
E R R O R d ) = .2 * A B S F ( Y K I ) - Y2(I)) 
IF (EPS2- tRRCR(l)) 35. 34, 34 

14 O D N T I N U E 

DO 32 1 = 1,N 
32 Y o d ) = Y2(!) 

41 

44 
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LOC » LOC • 1 
33 IF (LOC - MLOC) 37, 99, 99 
37 IF (LOC • 1) 48, 47, 48 
47 IF (MLOC - 2) 48. 49. 49 
44 DO 31 1=1,N 

IF (EPS2- ERRORd) • 64,) 48, 48, 31 
31 CO'JT INUE 
24 

35 

99 

H = HG 
LUC = LOC / 
MLOC * MLOC 
00 TO 38 
H X HE 
MLOC 5 MLOC 
LOC = LOC • 
GO TO 38 
RETURN 
RND 

2 
/ 

• 
2 

• Y(2) /d.O - Y(2)) 

SUoROUTlNE FCT (Y, F) 
COMMON U 
DIMENSION Y(4), F(4) 
F d ) s 0.31 • Y d ) 
F(2) = U 
F(3) = 0,31 • Y(3) • Y(2)/d,o 
F(4) < 0.31 •(Y(2)*Y(4)*Yd)/{l, 
RtTURN 
bNO 

- Y(2) ) 
O-Y(2)))/d.0-Y(2)) 
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